Skip to main content

Gaining Wings to FLY: Using Drosophila Oogenesis as an Entry Point for Citizen Scientists in Laboratory Research

  • Protocol
  • First Online:
Drosophila Oogenesis

Abstract

Citizen science is a productive approach to include non-scientists in research efforts that impact particular issues or communities. In most cases, scientists at advanced career stages design high-quality, exciting projects that enable citizen contribution, a crowdsourcing process that drives discovery forward and engages communities. The challenges of having citizens design their own research with no or limited training and providing access to laboratory tools, reagents, and supplies have limited citizen science efforts. This leaves the incredible life experiences and immersion of citizens in communities that experience health disparities out of the research equation, thus hampering efforts to address community health needs with a full picture of the challenges that must be addressed. Here, we present a robust and reproducible approach that engages participants from Grade 5 through adult in research focused on defining how diet impacts disease signaling. We leverage the powerful genetics, cell biology, and biochemistry of Drosophila oogenesis to define how nutrients impact phenotypes associated with genetic mutants that are implicated in cancer and diabetes. Participants lead the project design and execution, flipping the top-down hierarchy of the prevailing scientific culture to co-create research projects and infuse the research with cultural and community relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. National Science Board NSF (2021) The STEM labor force of today: scientists, engineers and skilled technical workers. NSB-2021-2

    Google Scholar 

  2. The Bureau of Labor Statistics (2021) Occupational outlook handbook. U.S. Department of Labor. https://www.bls.gov/ooh/about/ooh-developer-info.htm

    Google Scholar 

  3. Herman A (2019) America’s STEM crisis threatens our national security. Am Aff 3(1):127–148

    Google Scholar 

  4. Lambert WM, Wells MT, Cipriano MF, Sneva JN, Morris JA, Golightly LM (2020) Career choices of underrepresented and female postdocs in the biomedical sciences. eLife 9:e48774. https://doi.org/10.7554/eLife.48774

    Article  CAS  Google Scholar 

  5. Board NS (2020) Science and engineering indicators 2020: the state of U.S. science and engineering, vol NSB-2020-1. National Science Foundation, Alexandria

    Google Scholar 

  6. Rosenzweig EQ, Hecht CA, Priniski SJ, Canning EA, Asher MW, Tibbetts Y, Hyde JS, Harackiewicz JM (2021) Inside the STEM pipeline: changes in students’ biomedical career plans across the college years. Sci Adv 7(18):eabe0985. https://doi.org/10.1126/sciadv.abe0985

    Article  Google Scholar 

  7. McGee EO (2020) Interrogating structural racism in STEM higher education. Educ Res 49(9):633–644

    Article  Google Scholar 

  8. Fry R, Kennedy B, Funk C (2021) STEM jobs see uneven progress in increasing gender, racial and ethnic diversity. Pew Research Center

    Google Scholar 

  9. LaVeist TA, Pierre G (2014) Integrating the 3Ds–social determinants, health disparities, and health-care workforce diversity. Public Health Rep 129 Suppl 2(Suppl 2):9–14. https://doi.org/10.1177/00333549141291S204

    Article  Google Scholar 

  10. Castillo-Page L, Conrad SS, Caulfield M, Dill M, Eliason J, Jones K, Sims AM, Ciera Brown L (2019) Diversity in medicine: facts and figures 2019. Association of American Medical Colleges, Washington, D.C.

    Google Scholar 

  11. Smiley R, Lauer P, Bienemy C, Berg J, Shireman E, Reneau K, Alexander M (2018) The 2017 National Nursing Workforce Survey. J Nurs Regul 9(3):S1–S88

    Article  Google Scholar 

  12. Shah Harsh R, Martinez Luis R (2016) Current approaches in implementing citizen science in the classroom. J Microbiol Biol Educ 17(1):17–22. https://doi.org/10.1128/jmbe.v17i1.1032

    Article  CAS  Google Scholar 

  13. OECD (2019) PISA 2018 assessment and analytical framework. OECD publishing

    Book  Google Scholar 

  14. Byington CL, Lee V (2015) Addressing disparities in academic medicine: moving forward. JAMA 314(11):1139–1141. https://doi.org/10.1001/jama.2015.10664

    Article  Google Scholar 

  15. Nelson B (2014) The data on diversity. Commun ACM 57(11):86–95. https://doi.org/10.1145/2597886

    Article  Google Scholar 

  16. Bangera G, Brownell SE (2014) Course-based undergraduate research experiences can make scientific research more inclusive. CBE Life Sci Educ 13(4):602–606. https://doi.org/10.1187/cbe.14-06-0099

    Article  Google Scholar 

  17. Collins TW, Grineski SE, Shenberger J, Morales X, Morera OF, Echegoyen LE (2017) Undergraduate research participation is associated with improved student outcomes at a Hispanic-serving institution. J Coll Stud Dev 58(4):583–600. https://doi.org/10.1353/csd.2017.0044

    Article  Google Scholar 

  18. Graham Mark J, Frederick J, Byars-Winston A, Hunter A-B, Handelsman J (2013) Increasing persistence of college students in STEM. Science 341(6153):1455–1456. https://doi.org/10.1126/science.1240487

    Article  CAS  Google Scholar 

  19. Jones MT, Barlow AEL, Villarejo M (2010) Importance of undergraduate research for minority persistence and achievement in biology. J High Educ 81(1):82–115. https://doi.org/10.1080/00221546.2010.11778971

    Article  Google Scholar 

  20. Linn Marcia C, Palmer E, Baranger A, Gerard E, Stone E (2015) Undergraduate research experiences: impacts and opportunities. Science 347(6222):1261757. https://doi.org/10.1126/science.1261757

    Article  CAS  Google Scholar 

  21. Rodríguez Amaya L, Betancourt T, Collins KH, Hinojosa O, Corona C (2018) Undergraduate research experiences: mentoring, awareness, and perceptions—a case study at a Hispanic-serving institution. Int J STEM Educ 5(1):9. https://doi.org/10.1186/s40594-018-0105-8

    Article  Google Scholar 

  22. Strayhorn TL (2010) Undergraduate research participation and STEM graduate degree aspirations among students of color. New Dir Inst Res 2010(148):85–93. https://doi.org/10.1002/ir.364

    Article  Google Scholar 

  23. Carpi A, Ronan DM, Falconer HM, Lents NH (2017) Cultivating minority scientists: undergraduate research increases self-efficacy and career ambitions for underrepresented students in STEM. J Res Sci Teach 54(2):169–194. https://doi.org/10.1002/tea.21341

    Article  Google Scholar 

  24. Chen J, Call GB, Beyer E, Bui C, Cespedes A, Chan A, Chan J, Chan S, Chhabra A, Dang P, Deravanesian A, Hermogeno B, Jen J, Kim E, Lee E, Lewis G, Marshall J, Regalia K, Shadpour F, Shemmassian A, Spivey K, Wells M, Wu J, Yamauchi Y, Yavari A, Abrams A, Abramson A, Amado L, Anderson J, Bashour K, Bibikova E, Bookatz A, Brewer S, Buu N, Calvillo S, Cao J, Chang A, Chang D, Chang Y, Chen Y, Choi J, Chou J, Datta S, Davarifar A, Desai P, Fabrikant J, Farnad S, Fu K, Garcia E, Garrone N, Gasparyan S, Gayda P, Goffstein C, Gonzalez C, Guirguis M, Hassid R, Hong A, Hong J, Hovestreydt L, Hu C, Jamshidian F, Kahen K, Kao L, Kelley M, Kho T, Kim S, Kim Y, Kirkpatrick B, Kohan E, Kwak R, Langenbacher A, Laxamana S, Lee C, Lee J, Lee SY, Lee TH, Lee T, Lezcano S, Lin H, Lin P, Luu J, Luu T, Marrs W, Marsh E, Min S, Minasian T, Misra A, Morimoto M, Moshfegh Y, Murray J, Nguyen C, Nguyen K, Nodado E 2nd, O’Donahue A, Onugha N, Orjiakor N, Padhiar B, Pavel-Dinu M, Pavlenko A, Paz E, Phaklides S, Pham L, Poulose P, Powell R, Pusic A, Ramola D, Ribbens M, Rifai B, Rosselli D, Saakyan M, Saarikoski P, Segura M, Singh R, Singh V, Skinner E, Solomin D, Soneji K, Stageberg E, Stavchanskiy M, Tekchandani L, Thai L, Thiyanaratnam J, Tong M, Toor A, Tovar S, Trangsrud K, Tsang WY, Uemura M, Unkovic M, Vollmer E, Weiss E, Wood D, Wu S, Wu W, Xu Q, Yackle K, Yarosh W, Yee L, Yen G, Alkin G, Go S, Huff DM, Minye H, Paul E, Villarasa N, Milchanowski A, Banerjee U (2005) Discovery-based science education: functional genomic dissection in Drosophila by undergraduate researchers. PLoS Biol 3(2):e59. https://doi.org/10.1371/journal.pbio.0030059

    Article  CAS  Google Scholar 

  25. Hernandez PR, Woodcock A, Estrada M, Schultz PW (2018) Undergraduate research experiences broaden diversity in the scientific workforce. Bioscience 68(3):204–211. https://doi.org/10.1093/biosci/bix163

    Article  Google Scholar 

  26. Lopatto D (2004) Survey of undergraduate research experiences (SURE): first findings. Cell Biol Educ 3(4):270–277. https://doi.org/10.1187/cbe.04-07-0045

    Article  Google Scholar 

  27. Lopatto D (2007) Undergraduate research experiences support science career decisions and active learning. CBE Life Sci Educ 6(4):297–306. https://doi.org/10.1187/cbe.07-06-0039

    Article  Google Scholar 

  28. Royster P (2015) Timing is everything: getting students Back on track to college readiness in high school. High Sch J 98(3):208–225

    Article  Google Scholar 

  29. Estrada M, Burnett M, Campbell AG, Campbell PB, Denetclaw WF, Gutiérrez CG, Hurtado S, John GH, Matsui J, McGee R, Okpodu CM, Robinson TJ, Summers MF, Werner-Washburne M, Zavala M (2016) Improving underrepresented minority student persistence in STEM. CBE Life Sci Educ 15(3):es5. https://doi.org/10.1187/cbe.16-01-0038

    Article  Google Scholar 

  30. Hein V, Smerdon B, Sambolt MW (2013) Predictors of postsecondary success. Retrieved from https://www.cde.state.co.us/postsecondary/americaninstitutes

  31. Kricorian K, Seu M, Lopez D, Ureta E, Equils O (2020) Factors influencing participation of underrepresented students in STEM fields: matched mentors and mindsets. Int J STEM Educ 7(1):16. https://doi.org/10.1186/s40594-020-00219-2

    Article  Google Scholar 

  32. Rainey K, Dancy M, Mickelson R, Stearns E, Moller S (2018) Race and gender differences in how sense of belonging influences decisions to major in STEM. Int J STEM Educ 5(1):10. https://doi.org/10.1186/s40594-018-0115-6

    Article  Google Scholar 

  33. Hoppe TA, Litovitz A, Willis KA, Meseroll RA, Perkins MJ, Hutchins BI, Davis AF, Lauer MS, Valantine HA, Anderson JM, Santangelo GM (2019) Topic choice contributes to the lower rate of NIH awards to African-American/black scientists. Sci Adv 5(10):eaaw7238. https://doi.org/10.1126/sciadv.aaw7238

    Article  CAS  Google Scholar 

  34. Page-Reeves J, Cortez GL, Ortiz Y, Moffett M, Deerinwater K, Medin D (2019) Situating giving back for native Americans pursuing careers in STEM: you don’t just take, you give something back. Intersect Crit Issues Educ 3(1):4. https://digitalrepository.unm.edu/intersections/vol3/iss1/4

    Google Scholar 

  35. Seymour E, Hunter A-B (2019) Talking about Leaving Revisited: persistence, relocation, and loss in undergraduate STEM education. Springer

    Book  Google Scholar 

  36. Stanford N, Carlock S, Jia F (2021) The role of Community in Black Identity Development and Occupational Choice. Societies 11(3):111. https://doi.org/10.3390/soc11030111

    Article  Google Scholar 

  37. Taffe MA, Gilpin NW (2021) Racial inequity in grant funding from the US National Institutes of Health. eLife 10:e65697. https://doi.org/10.7554/eLife.65697

    Article  Google Scholar 

  38. Bonney R, Cooper CB, Dickinson J, Kelling S, Phillips T, Rosenberg KV, Shirk J (2009) Citizen science: a developing tool for expanding science knowledge and scientific literacy. Bioscience 59(11):977–984

    Article  Google Scholar 

  39. Hand E (2010) Citizen science: people power. Nature 466(7307):685–687

    Article  CAS  Google Scholar 

  40. Cooper S, Khatib F, Treuille A, Barbero J, Lee J, Beenen M, Leaver-Fay A, Baker D, Popović Z, Players F (2010) Predicting protein structures with a multiplayer online game. Nature 466(7307):756–760. https://doi.org/10.1038/nature09304

    Article  CAS  Google Scholar 

  41. Kim JS, Greene MJ, Zlateski A, Lee K, Richardson M, Turaga SC, Purcaro M, Balkam M, Robinson A, Behabadi BF, Campos M, Denk W, Seung HS (2014) Space-time wiring specificity supports direction selectivity in the retina. Nature 509(7500):331–336. https://doi.org/10.1038/nature13240

    Article  CAS  Google Scholar 

  42. Falkenhain K, Ruiz-Uribe NE, Haft-Javaherian M, Ali M, Stall C, Michelucci PE, Schaffer CB, Bracko O (2020) A pilot study investigating the effects of voluntary exercise on capillary stalling and cerebral blood flow in the APP/PS1 mouse model of Alzheimer’s disease. PLoS One 15(8):e0235691–e0235691. https://doi.org/10.1371/journal.pone.0235691

    Article  CAS  Google Scholar 

  43. Bracko O, Njiru BN, Swallow M, Ali M, Haft-Javaherian M, Schaffer CB (2020) Increasing cerebral blood flow improves cognition into late stages in Alzheimer’s disease mice. J Cereb Blood Flow Metab 40(7):1441–1452. https://doi.org/10.1177/0271678x19873658

    Article  CAS  Google Scholar 

  44. Bonney R, Phillips TB, Ballard HL, Enck JW (2016) Can citizen science enhance public understanding of science? Public Underst Sci 25(1):2–16

    Article  Google Scholar 

  45. Miller-Rushing A, Primack R, Bonney R (2012) The history of public participation in ecological research. Front Ecol Environ 10(6):285–290

    Article  Google Scholar 

  46. Shirk JL, Ballard HL, Wilderman CC, Phillips T, Wiggins A, Jordan R, McCallie E, Minarchek M, Lewenstein BV, Krasny ME (2012) Public participation in scientific research: a framework for deliberate design. Ecol Soc 17(2):29

    Article  Google Scholar 

  47. Brossard D, Lewenstein B, Bonney R (2005) Scientific knowledge and attitude change: the impact of a citizen science project. Int J Sci Educ 27(9):1099–1121

    Article  Google Scholar 

  48. Jordan TC, Burnett SH, Carson S, Caruso SM, Clase K, DeJong RJ, Dennehy JJ, Denver DR, Dunbar D, Elgin SC (2014) A broadly implementable research course in phage discovery and genomics for first-year undergraduate students. MBio 5(1):e01051–e01013

    Article  Google Scholar 

  49. Lemon A, Bordenstein SR, Bordenstein SR (2020) Discover the microbes within! The Wolbachia project: citizen science and student-based discoveries for 15 years and counting. Genetics 216(2):263–268. https://doi.org/10.1534/genetics.120.303649

    Article  Google Scholar 

  50. Shuda JR, Butler VG, Vary R, Farber SA (2016) Project BioEYES: accessible student-driven science for K-12 students and teachers. PLoS Biol 14(11):e2000520. https://doi.org/10.1371/journal.pbio.2000520

    Article  CAS  Google Scholar 

  51. Taylor MB, Skophammer R, Warwick AR, Boyer JM, Students Y, Walson M, Large CRL, Hickey AS-M, Rowley PA, Dunham MJ (2021) yEvo: experimental evolution in high school classrooms selects for novel mutations and epistatic interactions that impact clotrimazole resistance in S. cerevisiae. bioRxiv:2021.2005.2002.442375. https://doi.org/10.1101/2021.05.02.442375

  52. Gunnell JL, Golumbic YN, Hayes T, Cooper M (2021) Co-created citizen science: challenging cultures and practice in scientific research. J Sci Commun 20(5):1–17

    Article  Google Scholar 

  53. Golumbic YN, Orr D, Baram-Tsabari A, Fishbain B (2017) Between vision and reality: a study of scientists’ views on citizen science. Citiz Sci Theory Pract 2(1):6

    Article  Google Scholar 

  54. Riesch H, Potter C (2013) Citizen science as seen by scientists: methodological, epistemological and ethical dimensions. Public Underst Sci 23(1):107–120. https://doi.org/10.1177/0963662513497324

    Article  Google Scholar 

  55. Cohn JP (2008) Citizen science: can volunteers do real research? Bioscience 58(3):192–197. https://doi.org/10.1641/b580303

    Article  Google Scholar 

  56. Cooper CB, Dickinson J, Phillips T, Bonney R (2007) Citizen science as a tool for conservation in residential ecosystems. Ecol Soc 12(2):11

    Article  Google Scholar 

  57. Bowser A, Wiggins A, Shanley L, Preece J, Henderson S (2014) Sharing data while protecting privacy in citizen science. Interactions 21(1):70–73

    Article  Google Scholar 

  58. Carethers JM, Sengupta R, Blakey R, Ribas A, Souza G (2020) Disparities in cancer prevention in the COVID-19 era. Cancer Prev Res 13(11):893. https://doi.org/10.1158/1940-6207.CAPR-20-0447

    Article  CAS  Google Scholar 

  59. Minas TZ, Kiely M, Ajao A, Ambs S (2021) An overview of cancer health disparities: new approaches and insights and why they matter. Carcinogenesis 42(1):2–13. https://doi.org/10.1093/carcin/bgaa121

    Article  CAS  Google Scholar 

  60. Zavala VA, Bracci PM, Carethers JM, Carvajal-Carmona L, Coggins NB, Cruz-Correa MR, Davis M, de Smith AJ, Dutil J, Figueiredo JC, Fox R, Graves KD, Gomez SL, Llera A, Neuhausen SL, Newman L, Nguyen T, Palmer JR, Palmer NR, Pérez-Stable EJ, Piawah S, Rodriquez EJ, Sanabria-Salas MC, Schmit SL, Serrano-Gomez SJ, Stern MC, Weitzel J, Yang JJ, Zabaleta J, Ziv E, Fejerman L (2021) Cancer health disparities in racial/ethnic minorities in the United States. Br J Cancer 124(2):315–332. https://doi.org/10.1038/s41416-020-01038-6

    Article  Google Scholar 

  61. Livengood K, Diez Roux A, Mullin G, Acharya B, Bettigole C, Moore K, Rollins H, Washington R (2020) Community brief: cancer in Philadelphia. Drexel University Urban Health Collaborative

    Google Scholar 

  62. Jenkins LL (2011) Using citizen science beyond teaching science content: a strategy for making science relevant to students’ lives. Cult Stud Sci Educ 6(2):501–508. https://doi.org/10.1007/s11422-010-9304-4

    Article  Google Scholar 

  63. Greshake Tzovaras B, Rera M, Wintermute EH, Kloppenborg K, Ferry-Danini J, Aidelberg G, Aronoff R, Lindner A, Misevic D (2021) Empowering grassroots innovation to accelerate biomedical research. PLoS Biol 19(8):e3001349. https://doi.org/10.1371/journal.pbio.3001349

    Article  CAS  Google Scholar 

  64. Fisher AJ, Mendoza-Denton R, Patt C, Young I, Eppig A, Garrell RL, Rees DC, Nelson TW, Richards MA (2019) Structure and belonging: pathways to success for underrepresented minority and women PhD students in STEM fields. PLoS One 14(1):e0209279–e0209279. https://doi.org/10.1371/journal.pone.0209279

    Article  CAS  Google Scholar 

  65. Clark US, Hurd YL (2020) Addressing racism and disparities in the biomedical sciences. Nat Hum Behav 4(8):774–777. https://doi.org/10.1038/s41562-020-0917-7

    Article  Google Scholar 

  66. Hayes CA (2021) Black scientists are not the door to diversity. ACS Chem Neurosci 12(13):2256–2260. https://doi.org/10.1021/acschemneuro.1c00375

    Article  CAS  Google Scholar 

  67. Safdari R, Ehtesham H, Robiaty M, Ziaee N (2018) Barriers to participation in medical research from the perspective of researchers. J Educ Health Promot 7:22–22. https://doi.org/10.4103/jehp.jehp_26_17

    Article  Google Scholar 

  68. Nov O, Arazy O, Anderson D (2014) Scientists@home: what drives the quantity and quality of online citizen science participation? PLoS One 9(4):e90375. https://doi.org/10.1371/journal.pone.0090375

    Article  CAS  Google Scholar 

  69. Petersen C, Austin RR, Backonja U, Campos H, Chung AE, Hekler EB, Hsueh P-YS, Kim KK, Pho A, Salmi L, Solomonides A, Valdez RS (2019) Citizen science to further precision medicine: from vision to implementation. JAMIA Open 3(1):2–8. https://doi.org/10.1093/jamiaopen/ooz060

    Article  Google Scholar 

  70. Means B, Wang H, Wei X, Lynch S, Peters V, Young V, Allen C (2017) Expanding STEM opportunities through inclusive STEM-focused high schools. Sci Educ 101(5):681–715. https://doi.org/10.1002/sce.21281

    Article  Google Scholar 

  71. Sigismund S, Avanzato D, Lanzetti L (2018) Emerging functions of the EGFR in cancer. Mol Oncol 12(1):3–20. https://doi.org/10.1002/1878-0261.12155

    Article  Google Scholar 

  72. Pyrowolakis G, Veikkolainen V, Yakoby N, Shvartsman SY (2017) Gene regulation during Drosophila eggshell patterning. Proc Natl Acad Sci 114(23):5808–5813

    Article  CAS  Google Scholar 

  73. Wasserman JD, Freeman M (1998) An autoregulatory cascade of EGF receptor signaling patterns the Drosophila egg. Cell 95(3):355–364

    Article  CAS  Google Scholar 

  74. Cavaliere V, Bernardi F, Romani P, Duchi S, Gargiulo G (2008) Building up the Drosophila eggshell: first of all the eggshell genes must be transcribed. Dev Dyn 237(8):2061–2072

    Article  CAS  Google Scholar 

  75. Wu X, Tanwar PS, Raftery LA (2008) Drosophila follicle cells: morphogenesis in an eggshell. Semin Cell Dev Biol 19(3):271–282. https://doi.org/10.1016/j.semcdb.2008.01.004

    Article  CAS  Google Scholar 

  76. Horne-Badovinac S, Bilder D (2005) Mass transit: epithelial morphogenesis in the drosophila egg chamber. Dev Dyn 232(3):559–574. https://doi.org/10.1002/dvdy.20286

    Article  CAS  Google Scholar 

  77. Matis M, Axelrod JD (2013) Regulation of PCP by the fat signaling pathway. Genes Dev 27(20):2207–2220. https://doi.org/10.1101/gad.228098.113

    Article  CAS  Google Scholar 

  78. Gutzeit HO (1986) The role of microfilaments in cytoplasmic streaming in Drosophila follicles. J Cell Sci 80(1):159–169

    Article  CAS  Google Scholar 

  79. Cooley L, Verheyen E, Ayers K (1992) chickadee encodes a profilin required for intercellular cytoplasm transport during Drosophila oogenesis. Cell 69(1):173–184

    Article  CAS  Google Scholar 

  80. Xu MJ, Johnson DE, Grandis JR (2017) EGFR-targeted therapies in the post-genomic era. Cancer Metastasis Rev 36(3):463–473. https://doi.org/10.1007/s10555-017-9687-8

    Article  Google Scholar 

  81. Horne-Badovinac S, Hill J, Gerlach G 2nd, Menegas W, Bilder D (2012) A screen for round egg mutants in Drosophila identifies tricornered, furry, and misshapen as regulators of egg chamber elongation. G3 (Bethesda) 2(3):371–378. https://doi.org/10.1534/g3.111.001677

    Article  CAS  Google Scholar 

  82. Horne-Badovinac S (2014) The Drosophila egg chamber—a new spin on how tissues elongate. Integr Comp Biol 54(4):667–676. https://doi.org/10.1093/icb/icu067

    Article  CAS  Google Scholar 

  83. Duhart JC, Parsons TT, Raftery LA (2017) The repertoire of epithelial morphogenesis on display: progressive elaboration of Drosophila egg structure. Mech Dev 148:18–39. https://doi.org/10.1016/j.mod.2017.04.002

    Article  CAS  Google Scholar 

  84. Barlan K, Cetera M, Horne-Badovinac S (2017) Fat2 and Lar define a basally localized planar signaling system controlling collective cell migration. Dev Cell 40(5):467–477.e465. https://doi.org/10.1016/j.devcel.2017.02.003

    Article  CAS  Google Scholar 

  85. Cooley L (1998) Drosophila ring canal growth requires Src and Tec kinases. Cell 93(6):913–915

    Article  CAS  Google Scholar 

  86. Dodson GS, Guarnieri DJ, Simon MA (1998) Src64 is required for ovarian ring canal morphogenesis during Drosophila oogenesis. Development 125(15):2883–2892

    Article  CAS  Google Scholar 

  87. Guarnieri DJ, Dodson GS, Simon MA (1998) SRC64 regulates the localization of a Tec-family kinase required for Drosophila ring canal growth. Mol Cell 1(6):831–840

    Article  CAS  Google Scholar 

  88. Lu N, Guarnieri DJ, Simon MA (2004) Localization of Tec29 to ring canals is mediated by Src64 and PtdIns(3,4,5)P3-dependent mechanisms. EMBO J 23(5):1089–1100

    Article  Google Scholar 

  89. O’Reilly AM, Ballew AC, Miyazawa B, Stocker H, Hafen E, Simon MA (2005) Src64 and CSK are required in the germline for cyst encasuplation during Drosophila oogenesis. submitted to Development

    Google Scholar 

  90. Hinnant TD, Merkle JA, Ables ET (2020) Coordinating proliferation, polarity, and cell fate in the drosophila female germline. Front Cell Dev Biol 8(19):19. https://doi.org/10.3389/fcell.2020.00019

    Article  Google Scholar 

  91. Tepass U, Gruszynski-DeFeo E, Haag TA, Omatyar L, Török T, Hartenstein V (1996) Shotgun encodes Drosophila E-cadherin and is preferentially required during cell rearrangement in the neurectoderm and other morphogenetically active epithelia. Genes Dev 10(6):672–685

    Article  CAS  Google Scholar 

  92. Bulgakova NA, Klapholz B, Brown NH (2012) Cell adhesion in Drosophila: versatility of cadherin and integrin complexes during development. Curr Opin Cell Biol 24(5):702–712. https://doi.org/10.1016/j.ceb.2012.07.006

    Article  CAS  Google Scholar 

  93. Niewiadomska P, Godt D, Tepass U (1999) DE-Cadherin is required for intercellular motility during Drosophila oogenesis. J Cell Biol 144(3):533–547. https://doi.org/10.1083/jcb.144.3.533

    Article  CAS  Google Scholar 

  94. Cai D, Chen S-C, Prasad M, He L, Wang X, Choesmel-Cadamuro V, Sawyer JK, Danuser G, Montell DJ (2014) Mechanical feedback through E-cadherin promotes direction sensing during collective cell migration. Cell 157(5):1146–1159. https://doi.org/10.1016/j.cell.2014.03.045

    Article  CAS  Google Scholar 

  95. Fulga TA, Rørth P (2002) Invasive cell migration is initiated by guided growth of long cellular extensions. Nat Cell Biol 4(9):715–719. https://doi.org/10.1038/ncb848

    Article  CAS  Google Scholar 

  96. Stuelten CH, Parent CA, Montell DJ (2018) Cell motility in cancer invasion and metastasis: insights from simple model organisms. Nat Rev Cancer 18(5):296–312. https://doi.org/10.1038/nrc.2018.15

    Article  CAS  Google Scholar 

  97. Gupta T, Schüpbach T (2001) Two signals are better than one: border cell migration in Drosophila. Dev Cell 1(4):443–445. https://doi.org/10.1016/S1534-5807(01)00062-4

    Article  CAS  Google Scholar 

  98. Godt D, Tepass U (1998) Drosophila oocyte localization is mediated by differential cadherin-based adhesion. Nature 395(6700):387–391. https://doi.org/10.1038/26493

    Article  CAS  Google Scholar 

  99. González-Reyes A, St Johnston D (1998) The Drosophila AP axis is polarised by the cadherin-mediated positioning of the oocyte. Development 125:3635–3644

    Article  Google Scholar 

  100. Zhang Y, Kalderon D (2000) Regulation of cell proliferation and patterning in Drosophila oogenesis by Hedgehog signaling. Development 127(10):2165–2176

    Article  CAS  Google Scholar 

  101. Forbes AJ, Lin H, Ingham PW, Spradling AC (1996) Hedgehog is required for the proliferation and specification of ovarian somatic cells prior to egg chamber formation in Drosophila. Development 122(4):1125–1135

    Article  CAS  Google Scholar 

  102. Zhang Y, Kalderon D (2001) Hedgehog acts as a somatic stem cell factor in the Drosophila ovary. Nature 410(6828):599–604. https://doi.org/10.1038/35069099

    Article  CAS  Google Scholar 

  103. Bilder D, Li M, Perrimon N (2000) Cooperative regulation of cell polarity and growth by Drosophila tumor suppressors. Science 289(5476):113–116. https://doi.org/10.1126/science.289.5476.113

    Article  CAS  Google Scholar 

  104. Santa-Cruz Mateos C, Valencia-Expósito A, Palacios IM, Martín-Bermudo MD (2020) Integrins regulate epithelial cell shape by controlling the architecture and mechanical properties of basal actomyosin networks. PLoS Genet 16(6):e1008717

    Article  CAS  Google Scholar 

  105. Cooper J, Giancotti FG (2019) Integrin signaling in cancer: mechanotransduction, stemness, epithelial plasticity, and therapeutic resistance. Cancer Cell 35(3):347–367

    Article  CAS  Google Scholar 

  106. O’Reilly AM, Lee HH, Simon MA (2008) Integrins control the positioning and proliferation of follicle stem cells in the Drosophila ovary. J Cell Biol 182(4):801–815. https://doi.org/10.1083/jcb.200710141

    Article  CAS  Google Scholar 

  107. Lovegrove HE, Bergstralh DT, St Johnston D (2019) The role of integrins in Drosophila egg chamber morphogenesis. Development 146(23):dev182774. https://doi.org/10.1242/dev.182774

    Article  CAS  Google Scholar 

  108. Xu J, Gridley T (2012) Notch signaling during oogenesis in Drosophila melanogaster. Genet Res Int 2012:648207–648207. https://doi.org/10.1155/2012/648207

    Article  CAS  Google Scholar 

  109. López-Schier H, Johnston DS (2001) Delta signaling from the germ line controls the proliferation and differentiation of the somatic follicle cells during Drosophila oogenesis. Genes Dev 15(11):1393–1405

    Article  Google Scholar 

  110. Deng W-M, Althauser C, Ruohola-Baker H (2001) Notch-Delta signaling induces a transition from mitotic cell cycle to endocycle in Drosophila follicle cells. Development 128(23):4737–4746

    Article  CAS  Google Scholar 

  111. Kale J, Osterlund EJ, Andrews DW (2018) BCL-2 family proteins: changing partners in the dance towards death. Cell Death Differ 25(1):65–80. https://doi.org/10.1038/cdd.2017.186

    Article  CAS  Google Scholar 

  112. Quinn L, Coombe M, Mills K, Daish T, Colussi P, Kumar S, Richardson H (2003) Buffy, a Drosophila Bcl-2 protein, has anti-apoptotic and cell cycle inhibitory functions. EMBO J 22(14):3568–3579. https://doi.org/10.1093/emboj/cdg355

    Article  CAS  Google Scholar 

  113. Colussi PA, Quinn LM, Huang D, Coombe M, Read SH, Richardson H, Kumar S (2000) Debcl, a proapoptotic Bcl-2 homologue, is a component of the Drosophila melanogaster cell death machinery. J Cell Biol 148(4):703–714

    Article  CAS  Google Scholar 

  114. Stoppa-Lyonnet D (2016) The biological effects and clinical implications of BRCA mutations: where do we go from here? Eur J Hum Genet 24(1):S3–S9. https://doi.org/10.1038/ejhg.2016.93

    Article  CAS  Google Scholar 

  115. Krais JJ, Johnson N (2020) BRCA1 mutations in cancer: coordinating deficiencies in homologous recombination with tumorigenesis. Cancer Res 80(21):4601–4609. https://doi.org/10.1158/0008-5472.Can-20-1830

    Article  CAS  Google Scholar 

  116. Klovstad M, Abdu U, Schüpbach T (2008) Drosophila brca2 is required for mitotic and meiotic DNA repair and efficient activation of the meiotic recombination checkpoint. PLoS Genet 4(2):e31. https://doi.org/10.1371/journal.pgen.0040031

    Article  CAS  Google Scholar 

  117. Jia D, Huang Y-C, Deng W-M (2015) Analysis of cell cycle switches in Drosophila oogenesis. Methods Mol Biol 1328:207–216. https://doi.org/10.1007/978-1-4939-2851-4_15

    Article  CAS  Google Scholar 

  118. Edgar BA, Datar SA (1996) Zygotic degradation of two maternal Cdc25 mRNAs terminates Drosophila’s early cell cycle program. Genes Dev 10(15):1966–1977

    Article  CAS  Google Scholar 

  119. Calses PC, Crawford JJ, Lill JR, Dey A (2019) Hippo pathway in cancer: aberrant regulation and therapeutic opportunities. Trends Cancer 5(5):297–307

    Article  CAS  Google Scholar 

  120. Huang J, Kalderon D (2014) Coupling of Hedgehog and Hippo pathways promotes stem cell maintenance by stimulating proliferation. J Cell Biol 205(3):325–338. https://doi.org/10.1083/jcb.201309141

    Article  CAS  Google Scholar 

  121. Lin TH, Yeh TH, Wang TW, Yu JY (2014) The Hippo pathway controls border cell migration through distinct mechanisms in outer border cells and polar cells of the Drosophila ovary. Genetics 198(3):1087–1099. https://doi.org/10.1534/genetics.114.167346

    Article  CAS  Google Scholar 

  122. Hong H, Yang L, Stallcup MR (1999) Hormone-independent transcriptional activation and coactivator binding by novel orphan nuclear receptor ERR3. J Biol Chem 274(32):22618–22626

    Article  CAS  Google Scholar 

  123. Berman AY, Manna S, Schwartz NS, Katz YE, Sun Y, Behrmann CA, Yu JJ, Plas DR, Alayev A, Holz MK (2017) ERRα regulates the growth of triple-negative breast cancer cells via S6K1-dependent mechanism. Signal Transduct Target Ther 2:17035. https://doi.org/10.1038/sigtrans.2017.35

    Article  Google Scholar 

  124. Ma JH, Qi J, Lin SQ, Zhang CY, Liu FY, Xie WD, Li X (2019) STAT3 targets ERR-α to promote epithelial-mesenchymal transition, migration, and invasion in triple-negative breast cancer cells. Mol Cancer Res 17(11):2184–2195. https://doi.org/10.1158/1541-7786.Mcr-18-1194

    Article  CAS  Google Scholar 

  125. Du Y, Song L, Zhang L, Ling H, Zhang Y, Chen H, Qi H, Shi X, Li Q (2017) The discovery of novel, potent ERR-alpha inverse agonists for the treatment of triple negative breast cancer. Eur J Med Chem 136:457–467. https://doi.org/10.1016/j.ejmech.2017.04.050

    Article  CAS  Google Scholar 

  126. Cho B, Han Y, Lian M, Colditz GA, Weber JD, Ma C, Liu Y (2021) Evaluation of racial/ethnic differences in treatment and mortality among women with triple-negative breast cancer. JAMA Oncol 7(7):1016–1023. https://doi.org/10.1001/jamaoncol.2021.1254

    Article  Google Scholar 

  127. Dietze EC, Sistrunk C, Miranda-Carboni G, O’Regan R, Seewaldt VL (2015) Triple-negative breast cancer in African-American women: disparities versus biology. Nat Rev Cancer 15(4):248–254. https://doi.org/10.1038/nrc3896

    Article  CAS  Google Scholar 

  128. Zhang Q, Huang H, Zhang L, Wu R, Chung C-I, Zhang S-Q, Torra J, Schepis A, Coughlin SR, Kornberg TB, Shu X (2018) Visualizing dynamics of cell signaling in vivo with a phase separation-based kinase reporter. Mol Cell 69(2):334–346.e334. https://doi.org/10.1016/j.molcel.2017.12.008

    Article  CAS  Google Scholar 

  129. Aughey GN, Liu J-L (2015) Metabolic regulation via enzyme filamentation. Crit Rev Biochem Mol Biol 51(4):282–293. https://doi.org/10.3109/10409238.2016.1172555

    Article  CAS  Google Scholar 

  130. Chang CC, Jeng YM, Peng M, Keppeke GD, Sung LY, Liu JL (2017) CTP synthase forms the cytoophidium in human hepatocellular carcinoma. Exp Cell Res 361(2):292–299. https://doi.org/10.1016/j.yexcr.2017.10.030

    Article  CAS  Google Scholar 

  131. Liu J-L (2010) Intracellular compartmentation of CTP synthase in Drosophila. J Genet Genomics 37(5):281–296

    Article  CAS  Google Scholar 

  132. Strochlic TI, Stavrides KP, Thomas SV, Nicolas E, O’Reilly AM, Peterson JR (2014) Ack kinase regulates CTP synthase filaments during Drosophila oogenesis. EMBO Rep 15(11):1184–1191. https://doi.org/10.15252/embr.201438688

    Article  CAS  Google Scholar 

  133. Phosphate-buffered saline (PBS) (2006) Cold Spring Harb Protoc 2006(1):pdb.rec8247. https://doi.org/10.1101/pdb.rec8247

  134. Correa I, Wang M, Lee EH, Ruiz-Whalen DM, O’Reilly AM, Singh T (2021) Protocol for evaluating autophagy using LysoTracker staining in the epithelial follicle stem cells of the Drosophila ovary. STAR Protoc 2(2):100592. https://doi.org/10.1016/j.xpro.2021.100592

    Article  CAS  Google Scholar 

  135. Grape Juice Agar Plates (2015) Cold Spring Harb Protoc 2015(6):pdb.rec086876. https://doi.org/10.1101/pdb.rec086876

Download references

Acknowledgments

We would like to thank the congregation of Lion Zion Baptist Church, the UCScience Center’s BULB community, Ms. Dyson’s ninth grade environmental science students at Abraham Lincoln High School, the eCLOSE Institute CitSci Public Outreach participants, and students and teachers in the School District of Philadelphia, Kingsway Regional High School, Cheltenham High School, Abington Junior High School, and Nazareth Academy High School for lively discussions and contributions. This work was funded by grants from NICHD (R01 HD065800 (AOR)), NCI (T32 CA009035, P30 CA06927), Howard Hughes Medical Institute (RH, AOR), Genetics Society of America (FCCC trainees), Howard Lockhart Seiple Trust (eCLOSE), Anna T. Jeanes Foundation of Temple University Health System (eCLOSE), and donations to ISP and/or eCLOSE Institute from the Kicking Cancer Foundation (ISP), Janssen Pharmaceutical Companies of Johnson & Johnson (eCLOSE), Giant/Eagle Supermarkets (eCLOSE), Coriell Institute (eCLOSE), Oriental Trading Company (eCLOSE), Michael and Judith Bolotsky Foundation (ISP and eCLOSE), Dr. Benjamin Neel and Dr. Phyllis Koton Neel (eCLOSE), (…funding sources to be added).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dara M. Ruiz-Whalen or Alana M. O’Reilly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ruiz-Whalen, D.M. et al. (2023). Gaining Wings to FLY: Using Drosophila Oogenesis as an Entry Point for Citizen Scientists in Laboratory Research. In: Giedt, M.S., Tootle, T.L. (eds) Drosophila Oogenesis. Methods in Molecular Biology, vol 2626. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2970-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2970-3_22

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2969-7

  • Online ISBN: 978-1-0716-2970-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics