Skip to main content

Single-Step Capture and Targeted Metabolomics of Alkyl-Quinolones in Outer Membrane Vesicles (OMVs) of Pseudomonas Aeruginosa

  • Protocol
  • First Online:
Lipidomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2625))

Abstract

Outer membrane vesicles (OMVs), also called as bacterial membrane vesicles (BMVs), are secreted by many Gram-negative bacterial pathogens. These nanoscale vesicles traffic discrete arrays of virulence factors that can often induce complex pathologies far from the infection sites. The OMVs of P. aeruginosa, often regarded as the gold standard of BMVs are known to traffic a battery of specific small MW alkyl-quinolones (AQs). These AQs function like primordial hormones by modulating intra-species and inter-species bacterial interactions. They can also perform cross-kingdom signaling with the human host and directly exacerbate pathogenesis. The discrete isotopic signatures of AQs enjoy potential in the mass spectrometry-based diagnosis P. aeruginosa infections. Matrix-free laser desorption/ionization mass spectrometry (LDI-MS) presents a robust, cost-effective platform to fit this demand. We describe a LDI-MS system using inert ceramic filters that performs dual role of single-step enrichment of OMVs and matrix-free ionization/identification of AQs in situ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kulp A, Kuehn MJ (2010) Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu Rev Microbiol 64:163–184. Epub 2010/09/10

    Article  CAS  Google Scholar 

  2. Schwechheimer C, Kuehn MJ (2015) Outer-membrane vesicles from gram-negative bacteria: biogenesis and functions. Nat Rev Microbiol 13(10):605–619. Epub 2015/09/17

    Article  CAS  Google Scholar 

  3. Mashburn LM, Whiteley M (2005) Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature 437(7057):422–425

    Article  CAS  Google Scholar 

  4. Schwechheimer C, Kuehn MJ (2015) Outer-membrane vesicles from gram-negative bacteria: biogenesis and functions. Nat Rev Microbiol 13(10):605–619

    Article  CAS  Google Scholar 

  5. Wessel AK, Liew J, Kwon T, Marcotte EM, Whiteley M (2013) Role of Pseudomonas aeruginosa peptidoglycan-associated outer membrane proteins in vesicle formation. J Bacteriol 195(2):213–219. Epub 2012/11/06

    Article  CAS  Google Scholar 

  6. Vella BD, Schertzer JW (2015) Understanding and exploiting bacterial outer membrane vesicles. In: Pseudomonas. Springer, Dordrecht, pp 217–250

    Google Scholar 

  7. Roier S, Zingl FG, Cakar F, Durakovic S, Kohl P, Eichmann TO et al (2016) A novel mechanism for the biogenesis of outer membrane vesicles in gram-negative bacteria. Nat Commun 7:10515. Epub 2016/01/26

    Article  CAS  Google Scholar 

  8. Chatterjee SN, Chaudhuri K (2012) Gram-negative bacteria: the cell membranes. In: Outer membrane vesicles of bacteria. Springer, Berlin/Heidelberg, pp 15–34

    Chapter  Google Scholar 

  9. Choi CW, Park EC, Yun SH, Lee SY, Lee YG, Hong Y et al (2014) Proteomic characterization of the outer membrane vesicle of pseudomonas putida KT2440. J Proteome Res 13(10):4298–4309. Epub 2014/09/10

    Article  CAS  Google Scholar 

  10. Tashiro Y, Sakai R, Toyofuku M, Sawada I, Nakajima-Kambe T, Uchiyama H et al (2009) Outer membrane machinery and alginate synthesis regulators control membrane vesicle production in Pseudomonas aeruginosa. J Bacteriol 191(24):7509–7519. Epub 2009/10/20

    Article  CAS  Google Scholar 

  11. Bomberger JM, Maceachran DP, Coutermarsh BA, Ye S, O'Toole GA, Stanton BA (2009) Long-distance delivery of bacterial virulence factors by Pseudomonas aeruginosa outer membrane vesicles. PLoS Pathog 5(4):e1000382. Epub 2009/04/11

    Article  Google Scholar 

  12. Wispelwey B, Hansen EJ, Scheld WM (1989) Haemophilus influenzae outer membrane vesicle-induced blood-brain barrier permeability during experimental meningitis. Infect Immun 57(8):2559–2562. Epub 1989/08/01

    Article  CAS  Google Scholar 

  13. Bomberger JM, MacEachran DP, Coutermarsh BA, Ye SY, O'Toole GA, Stanton BA (2009) Long-distance delivery of bacterial virulence factors by pseudomonas aeruginosa outer membrane vesicles. PLoS Pathog 5(4):e1000382

    Article  Google Scholar 

  14. Kulkarni HM, Jagannadham MV (2014) Biogenesis and multifaceted roles of outer membrane vesicles from gram-negative bacteria. Microbiology 160(Pt 10):2109–2121. Epub 2014/07/30

    Article  CAS  Google Scholar 

  15. Oliver A, Mulet X, López-Causapé C, Juan C (2015) The increasing threat of Pseudomonas aeruginosa high-risk clones. Drug Resist Updat 21-22:41–59

    Article  Google Scholar 

  16. Kuehn MJ, Kesty NC (2005) Bacterial outer membrane vesicles and the host-pathogen interaction. Genes Dev 19(22):2645–2655. Epub 2005/11/18

    Article  CAS  Google Scholar 

  17. Schertzer JW, Whiteley M (2013) Bacterial outer membrane vesicles in trafficking, communication and the host-pathogen interaction. J Mol Microbiol Biotechnol 23(1–2):118–130. Epub 2013/04/26

    CAS  Google Scholar 

  18. Dubern JF, Diggle SP (2008) Quorum sensing by 2-alkyl-4-quinolones in pseudomonas aeruginosa and other bacterial species. Mol BioSyst 4(9):882–888. Epub 2008/08/16

    Article  CAS  Google Scholar 

  19. Camara M, Williams P, Barrett D, Halliday N, Knox A, Smyth A et al (2016) Alkyl quinolones as biomarkers of pseudomonas aeruginosa infection and uses thereof. US Patent 20,160,131,648

    Google Scholar 

  20. Huse H, Whiteley M (2011) 4-quinolones: smart phones of the microbial world. Chem Rev 111(1):152–159. Epub 2010/08/13

    Article  CAS  Google Scholar 

  21. Lepine F, Milot S, Deziel E, He J, Rahme LG (2004) Electrospray/mass spectrometric identification and analysis of 4-hydroxy-2-alkylquinolines (HAQs) produced by pseudomonas aeruginosa. J Am Soc Mass Spectrom 15(6):862–869. Epub 2004/05/18

    Article  CAS  Google Scholar 

  22. Inaba T, Oura H, Morinaga K, Toyofuku M, Nomura N (2015) The pseudomonas quinolone signal inhibits biofilm development of streptococcus mutans. Microbes Environ 30(2):189–191. Epub 2015/04/10

    Article  Google Scholar 

  23. Liu YC, Chan KG, Chang CY (2015) Modulation of host biology by pseudomonas aeruginosa quorum sensing signal molecules: messengers or traitors. Front Microbiol 6:1226. Epub 2015/12/01

    Article  Google Scholar 

  24. Kim K, Kim SH, Lépine F, Cho YH, Lee GR (2010) Global gene expression analysis on the target genes of PQS and HHQ in J774A.1 monocyte/macrophage cells. Microb Pathog 49(4):174–180

    Article  CAS  Google Scholar 

  25. Kim K, Kim YU, Koh BH, Hwang SS, Kim SH, Lépine F et al (2010) HHQ and PQS, two pseudomonas aeruginosa quorum-sensing molecules, down-regulate the innate immune responses through the nuclear factor-kappaB pathway. Immunology 129(4):578–588

    Article  CAS  Google Scholar 

  26. Abdalla MY, Hoke T, Seravalli J, Switzer BL, Bavitz M, Fliege JD et al (2017) Pseudomonas quinolone signal induces oxidative stress and inhibits heme oxygenase-1 expression in lung epithelial cells. Infect Immun 85(9):00176–00117

    Article  Google Scholar 

  27. Rieger B, Thierbach S, Ommer M, Dienhart FSV, Fetzner S, Busch KB (2020) Pseudomonas quinolone signal molecule PQS behaves like a B class inhibitor at the I(Q) site of mitochondrial complex I. FASEB Bioadv 2(3):188–202

    Article  CAS  Google Scholar 

  28. Legendre C, Reen FJ, Mooij MJ, McGlacken GP, Adams C, O'Gara F (2012) Pseudomonas aeruginosa alkyl quinolones repress hypoxia-inducible factor 1 (HIF-1) signaling through HIF-1alpha degradation. Infect Immun 80(11):3985–3992. Epub 2012/09/06

    Article  CAS  Google Scholar 

  29. Freund JR, Mansfield CJ, Doghramji LJ, Adappa ND, Palmer JN, Kennedy DW et al (2018) Activation of airway epithelial bitter taste receptors by Pseudomonas aeruginosa quinolones modulates calcium, cyclic-AMP, and nitric oxide signaling. J Biol Chem 293(25):9824–9840

    Article  CAS  Google Scholar 

  30. Collier DN, Anderson L, McKnight SL, Noah TL, Knowles M, Boucher R et al (2002) A bacterial cell to cell signal in the lungs of cystic fibrosis patients. FEMS Microbiol Lett 215(1):41–46

    Article  CAS  Google Scholar 

  31. Gruber JD, Chen W, Parnham S, Beauchesne K, Moeller P, Flume PA et al (2016) The role of 2,4-dihydroxyquinoline (DHQ) in Pseudomonas aeruginosa pathogenicity. PeerJ 4:e1495. Epub 2016/01/21

    Article  Google Scholar 

  32. Bala A, Chhibber S, Harjai K (2014) Pseudomonas quinolone signalling system: a component of quorum sensing cascade is a crucial player in the acute urinary tract infection caused by Pseudomonas aeruginosa. Int J Med Microbiol 304(8):1199–1208. Epub 2014/09/23

    Article  CAS  Google Scholar 

  33. Palmer GC, Schertzer JW, Mashburn-Warren L, Whiteley M (2011) Quantifying Pseudomonas aeruginosa quinolones and examining their interactions with lipids. Methods Mol Biol 692:207–217. Epub 2010/10/30

    Article  CAS  Google Scholar 

  34. Michalet S, Allard P-M, Commun C, Ngoc VTN, Nouwade K, Gioia B et al (2021) Alkyl-quinolones derivatives as potential biomarkers for Pseudomonas aeruginosa infection chronicity in cystic fibrosis. Sci Rep 11(1):20722

    Article  CAS  Google Scholar 

  35. Diggle SP, Fletcher MP, Camara M, Williams P (2011) Detection of 2-alkyl-4-quinolones using biosensors. Methods Mol Biol 692:21–30. Epub 2010/10/30

    Article  CAS  Google Scholar 

  36. Choi DS, Kim DK, Choi SJ, Lee J, Choi JP, Rho S et al (2011) Proteomic analysis of outer membrane vesicles derived from pseudomonas aeruginosa. Proteomics 11(16):3424–3429

    Article  CAS  Google Scholar 

  37. Bala A, Gupta RK, Chhibber S, Harjai K (2013) Detection and quantification of quinolone signalling molecule: a third quorum sensing molecule of pseudomonas aeruginosa by high performance-thin layer chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 930:30–35. Epub 2013/06/04

    Article  CAS  Google Scholar 

  38. Chutkan H, Macdonald I, Manning A, Kuehn MJ (2013) Quantitative and qualitative preparations of bacterial outer membrane vesicles. Methods Mol Biol 966:259–272. Epub 2013/01/10

    Article  CAS  Google Scholar 

  39. Baig NF, Dunham SJ, Morales-Soto N, Shrout JD, Sweedler JV, Bohn PW (2015) Multimodal chemical imaging of molecular messengers in emerging pseudomonas aeruginosa bacterial communities. Analyst 140(19):6544–6552. Epub 2015/09/04

    Article  CAS  Google Scholar 

  40. Peterson DS (2007) Matrix-free methods for laser desorption/ionization mass spectrometry. Mass Spectrom Rev 26(1):19–34. Epub 2006/09/13

    Article  CAS  Google Scholar 

  41. Coffinier Y, Boukherroub R (2014) Porous silicon-based mass spectrometry. In: Handbook of porous silicon. Springer, Cham, pp 869–885

    Chapter  Google Scholar 

  42. Kusano M, Kawabata S, Tamura Y, Mizoguchi D, Murouchi M, Kawasaki H et al (2014) Laser desorption/ionization mass spectrometry (LDI-MS) of lipids with iron oxide nanoparticle-coated targets. Mass Spectrom 3(1):A0026. Epub 2014/05/27

    Article  Google Scholar 

  43. Ghosh D, Panchagnula V, Dhaware D (2016) Selective detection and analysis of small molecules. Google Patents

    Google Scholar 

  44. Pluháček T, Lemr K, Ghosh D, Milde D, Novák J, Havlíček V (2016) Characterization of microbial siderophores by mass spectrometry. Mass Spectrom Rev 35(1):35–47

    Article  Google Scholar 

  45. Kulkarni AS, Huang L, Qian K (2021) Material-assisted mass spectrometric analysis of low molecular weight compounds for biomedical applications. J Mater Chem B 9(17):3622–3639

    Article  CAS  Google Scholar 

  46. Webb K, Cámara M, Zain NMM, Halliday N, Bruce KD, Nash EF et al (2021) Novel detection of specific bacterial quorum sensing molecules in saliva: potential non-invasive biomarkers for pulmonary pseudomonas aeruginosa in cystic fibrosis. J Cyst Fibros 21(4):626–629

    Article  Google Scholar 

  47. Strohalm M, Kavan D, Novak P, Volny M, Havlicek V (2010) mMass 3: a cross-platform software environment for precise analysis of mass spectrometric data. Anal Chem 82(11):4648–4651

    Article  CAS  Google Scholar 

  48. Kadurugamuwa JL, Beveridge TJ (1995) Virulence factors are released from pseudomonas aeruginosa in association with membrane vesicles during normal growth and exposure to gentamicin: a novel mechanism of enzyme secretion. J Bacteriol 177(14):3998–4008

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipankar Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lahiri, P., Gogoi, P., Ghosh, D. (2023). Single-Step Capture and Targeted Metabolomics of Alkyl-Quinolones in Outer Membrane Vesicles (OMVs) of Pseudomonas Aeruginosa. In: Bhattacharya, S.K. (eds) Lipidomics. Methods in Molecular Biology, vol 2625. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2966-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2966-6_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2965-9

  • Online ISBN: 978-1-0716-2966-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics