Skip to main content

A Guide to MethylationToActivity: A Deep Learning Framework That Reveals Promoter Activity Landscapes from DNA Methylomes in Individual Tumors

  • Protocol
  • First Online:
Computational Epigenomics and Epitranscriptomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2624))

Abstract

Genome-wide DNA methylomes have contributed greatly to tumor detection and subclassification. However, interpreting the biological impact of the DNA methylome at the individual gene level remains a challenge. MethylationToActivity (M2A) is a pipeline that uses convolutional neural networks to infer H3K4me3 and H3K27ac enrichment from DNA methylomes and thus infer promoter activity. It was shown to be highly accurate and robust in revealing promoter activity landscapes in various pediatric and adult cancers. The following will present a user-friendly guide through the model pipeline.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davuluri RV, Suzuki Y, Sugano S, Plass C, Huang TH (2008) The functional consequences of alternative promoter use in mammalian genomes. Trends Genet 24:167–177. https://doi.org/10.1016/j.tig.2008.01.008

    Article  CAS  PubMed  Google Scholar 

  2. Demircioglu D et al (2019) A pan-cancer transcriptome analysis reveals pervasive regulation through alternative promoters. Cell 178:1465–1477 e1417. https://doi.org/10.1016/j.cell.2019.08.018

    Article  CAS  PubMed  Google Scholar 

  3. Qamra A et al (2017) Epigenomic Promoter Alterations Amplify Gene Isoform and Immunogenic Diversity in Gastric Adenocarcinoma. Cancer Discov 7:630–651. https://doi.org/10.1158/2159-8290.CD-16-1022

    Article  CAS  PubMed  Google Scholar 

  4. Sotillo E et al (2015) Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov 5:1282–1295. https://doi.org/10.1158/2159-8290.CD-15-1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Grobner SN et al (2018) The landscape of genomic alterations across childhood cancers. Nature 555:321–327. https://doi.org/10.1038/nature25480

    Article  CAS  PubMed  Google Scholar 

  6. Ma X et al (2018) Pan-cancer genome and transcriptome analyses of 1,699 paediatric leukaemias and solid tumours. Nature 555:371–376. https://doi.org/10.1038/nature25795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Huether R et al (2014) The landscape of somatic mutations in epigenetic regulators across 1,000 paediatric cancer genomes. Nat Commun 5:3630. https://doi.org/10.1038/ncomms4630

    Article  CAS  PubMed  Google Scholar 

  8. Dong X et al (2012) Modeling gene expression using chromatin features in various cellular contexts. Genome Biol 13:R53. https://doi.org/10.1186/gb-2012-13-9-r53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Karlic R, Chung HR, Lasserre J, Vlahovicek K, Vingron M (2010) Histone modification levels are predictive for gene expression. Proc Natl Acad Sci U S A 107:2926–2931. https://doi.org/10.1073/pnas.0909344107

    Article  PubMed  PubMed Central  Google Scholar 

  10. Singh R, Lanchantin J, Robins G, Qi Y (2016) DeepChrome: deep-learning for predicting gene expression from histone modifications. Bioinformatics 32:i639–i648. https://doi.org/10.1093/bioinformatics/btw427

    Article  CAS  PubMed  Google Scholar 

  11. Kelley DZ et al (2017) Integrated analysis of whole-genome ChIP-Seq and RNA-Seq data of primary head and neck tumor samples associates HPV integration sites with open chromatin marks. Cancer Res 77:6538–6550. https://doi.org/10.1158/0008-5472.CAN-17-0833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Skene PJ, Henikoff S (2017) An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. Elife 6. https://doi.org/10.7554/eLife.21856

  13. Kagohara LT et al (2018) Epigenetic regulation of gene expression in cancer: techniques, resources and analysis. Brief Funct Genomics 17:49–63. https://doi.org/10.1093/bfgp/elx018

    Article  CAS  PubMed  Google Scholar 

  14. Zhang P, Lehmann BD, Shyr Y, Guo Y (2017) The utilization of formalin fixed-paraffin-embedded specimens in high throughput genomic studies. Int J Genomics 2017:1926304. https://doi.org/10.1155/2017/1926304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. de Ruijter TC et al (2015) Formalin-fixed, paraffin-embedded (FFPE) tissue epigenomics using Infinium HumanMethylation450 BeadChip assays. Lab Invest 95:833–842. https://doi.org/10.1038/labinvest.2015.53

    Article  CAS  PubMed  Google Scholar 

  16. Moran S et al (2014) Validation of DNA methylation profiling in formalin-fixed paraffin-embedded samples using the Infinium HumanMethylation450 Microarray. Epigenetics 9:829–833. https://doi.org/10.4161/epi.28790

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gu H et al (2010) Genome-scale DNA methylation mapping of clinical samples at single-nucleotide resolution. Nat Methods 7:133–136. https://doi.org/10.1038/nmeth.1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Charlet J et al (2016) Bivalent regions of cytosine methylation and H3K27 acetylation suggest an active role for DNA methylation at enhancers. Mol Cell 62:422–431. https://doi.org/10.1016/j.molcel.2016.03.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kondo Y (2009) Epigenetic cross-talk between DNA methylation and histone modifications in human cancers. Yonsei Med J 50:455–463. https://doi.org/10.3349/ymj.2009.50.4.455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Onuchic V et al (2018) Allele-specific epigenome maps reveal sequence-dependent stochastic switching at regulatory loci. Science 361. https://doi.org/10.1126/science.aar3146

  21. Rothbart SB, Strahl BD (1839) Interpreting the language of histone and DNA modifications. Biochim Biophys Acta 627-643:2014. https://doi.org/10.1016/j.bbagrm.2014.03.001

    Article  CAS  Google Scholar 

  22. Sheffield NC et al (2017) DNA methylation heterogeneity defines a disease spectrum in Ewing sarcoma. Nat Med 23:386–395. https://doi.org/10.1038/nm.4273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stadler MB et al (2011) DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480:490–495. https://doi.org/10.1038/nature10716

    Article  CAS  PubMed  Google Scholar 

  24. Zhu H, Wang G, Qian J (2016) Transcription factors as readers and effectors of DNA methylation. Nat Rev Genet 17:551–565. https://doi.org/10.1038/nrg.2016.83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ziller MJ et al (2013) Charting a dynamic DNA methylation landscape of the human genome. Nature 500:477–481. https://doi.org/10.1038/nature12433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hashimshony T, Zhang J, Keshet I, Bustin M, Cedar H (2003) The role of DNA methylation in setting up chromatin structure during development. Nat Genet 34:187–192. https://doi.org/10.1038/ng1158

    Article  CAS  PubMed  Google Scholar 

  27. Moore LD, Le T, Fan G (2013) DNA methylation and its basic function. Neuropsychopharmacology 38:23–38. https://doi.org/10.1038/npp.2012.112

    Article  CAS  PubMed  Google Scholar 

  28. Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13:484–492. https://doi.org/10.1038/nrg3230

    Article  CAS  PubMed  Google Scholar 

  29. Lay FD et al (2015) The role of DNA methylation in directing the functional organization of the cancer epigenome. Genome Res 25:467–477. https://doi.org/10.1101/gr.183368.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Baylin SB (2005) DNA methylation and gene silencing in cancer. Nat Clin Pract Oncol 2(Suppl 1):S4–S11. https://doi.org/10.1038/ncponc0354

    Article  CAS  PubMed  Google Scholar 

  31. Williams J et al (2021) MethylationToActivity: a deep-learning framework that reveals promoter activity landscapes from DNA methylomes in individual tumors. Genome Biol 22:24. https://doi.org/10.1186/s13059-020-02220-y

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dieseldorff Jones, K., Putnam, D., Williams, J., Chen, X. (2023). A Guide to MethylationToActivity: A Deep Learning Framework That Reveals Promoter Activity Landscapes from DNA Methylomes in Individual Tumors. In: Oliveira, P.H. (eds) Computational Epigenomics and Epitranscriptomics. Methods in Molecular Biology, vol 2624. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2962-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2962-8_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2961-1

  • Online ISBN: 978-1-0716-2962-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics