Skip to main content

Recollection of How We Came Across the Protein Modification with Amino Acids by Aminoacyl tRNA-Protein Transferase

  • Protocol
  • First Online:
Protein Arginylation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2620))

  • 369 Accesses

Abstract

Protein arginylation has been discovered in 1963 as a soluble activity in cell extracts that mediates the addition of amino acids to proteins. This discovery was nearly accidental, but due to the persistence of the research team, it has been followed through and led to the emergence of a new field of research. This chapter describes the original discovery of arginylation and the first methods used to demonstrate the existence of this important biological process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Crick FHC (1958) Protein synthesis. Symp Soc Exp Biol 12:138–163

    CAS  PubMed  Google Scholar 

  2. Volkin E, Astrachan L (1956) Phosphorus incorporation in Escherichia coli ribonucleic acid after infection with bacteriophage T2. Virology 2(2):149–161

    Article  CAS  PubMed  Google Scholar 

  3. Pardee AB, Jacob F, Monod J (1959) The genetic control and cytoplasmic expression of “Inducibility” in the synthesis of β-galactosidase by E. coli. J Mol Biol 1:165–178

    Article  CAS  Google Scholar 

  4. Kameyama T, Novelli GD (1960) The cell-free synthesis of β-galactosidase by Escherichia coli. Biochem Biophys Res Commun 2:393–396

    Article  Google Scholar 

  5. Chamberlin M, Berg P (1962) Deoxyribonucleic acid-directed synthesis of ribonucleic acid by an enzyme from Escherichia coli. Proc Natl Acad Sci U S A 48:81–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Momose K, Kaji A (1966) Soluble amino acid incorporating-system. III. Further studies on the product and its relation to the ribosomal system for incorporation. J Biol Chem 241:3294–3307

    Article  CAS  PubMed  Google Scholar 

  7. Kaji H, Novelli GD, Kaji A (1963) A soluble amino acid-incorporating system from rat liver. Biochim Biophys Acta 76:474–477

    Article  CAS  PubMed  Google Scholar 

  8. Kaji A, Kaji H, Novelli GD (1965) Soluble amino acid-incorporating system. II. Soluble nature of the system and the characterization of the radioactive product. J Biol Chem 240:1192–1197

    Article  CAS  PubMed  Google Scholar 

  9. Kaji A, Kaji H, Novelli GD (1965) Soluble amino acid-incorporation system. I. Preparation of the system and the nature of the reaction. J Biol Chem 240:1185–1191

    Article  CAS  PubMed  Google Scholar 

  10. Kaji A, Kaji H, Novelli GD (1963) A soluble amino acid incorporating system. Biochem Biophys Res Commun 10:406–409

    Article  CAS  PubMed  Google Scholar 

  11. Eisenstadt JM, Kameyama T, Novelli GD (1962) A requirement for gene-specific deoxyribonucleic acid for the cell-free synthesis of beta-galactosidase. Proc Natl Acad Sci U S A 48:652–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Leibowitz MJ, Soffer RL (1971) Modification of a specific ribosomal protein catalyzed by leucyl, phenylalanyl-tRNA: protein transferase. Proc Natl Acad Sci U S A 68(8):1866–1869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Soffer RL, Savage M (1974) A mutant of Escherichia coli defective in leucyl, phenylalanyl-tRNA-protein transferase. Proc Natl Acad Sci U S A 71(3):1004–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hirokawa G, Demeshkina N, Iwakura N, Kaji H, Kaji A (2006) The ribosome-recycling step: consensus or controversy? Trends Biochem Sci 31(3):143–149

    Article  CAS  PubMed  Google Scholar 

  15. Yokoyama T, Shaikh TR, Iwakura N, Kaji H, Kaji A, Agrawal RK (2012) Structural insights into initial and intermediate steps of the ribosome-recycling process. EMBO J 31(7):1836–1846. https://doi.org/10.1038/emboj.2012.22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vivanco-Dominguez S, Bueno-Martinez J, Leon-Avila G, Iwakura N, Kaji A, Kaji H et al (2012) Protein synthesis factors (RF1, RF2, RF3, RRF, and tmRNA) and peptidyl-tRNA hydrolase rescue stalled ribosomes at sense codons. J Mol Biol 417(5):425–439. https://doi.org/10.1016/j.jmb.2012.02.008

    Article  CAS  PubMed  Google Scholar 

  17. Lamborg MR, Zamecnik PC (1960) Amino acid incorporation into protein by extracts of E. coli. Biochim Biophys Acta 42:206–211

    Article  CAS  PubMed  Google Scholar 

  18. Hebecker S, Arendt W, Heinemann IU, Tiefenau JH, Nimtz M, Rohde M et al (2011) Alanyl-phosphatidylglycerol synthase: mechanism of substrate recognition during tRNA-dependent lipid modification in Pseudomonas aeruginosa. Mol Microbiol 80(4):935–950. https://doi.org/10.1111/j.1365-2958.2011.07621.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mans RJ, Novelli GD (1960) A convenient, rapid and sensitive method for measuring the incorporation of radioactive amino acids into protein. Biochem Biophys Res Commun 3:540–543

    Article  CAS  PubMed  Google Scholar 

  20. Brunngraber EF (1962) A simplified procedure for the preparation of “soluble” RNA from rat liver. Biochem Biophys Res Commun 8:1–3

    Article  CAS  PubMed  Google Scholar 

  21. Hoagland M (1996) Biochemistry or molecular biology? The discovery of ‘soluble RNA’. Trends Biochem Sci 21(2):77–80

    CAS  PubMed  Google Scholar 

  22. Kaji H (1968) Further studies on the soluble amino acid incorporating system from rat liver. Biochemistry 7(11):3844–3850

    Article  CAS  PubMed  Google Scholar 

  23. Kopitz J, Rist B, Bohley P (1990) Post-translational arginylation of ornithine decarboxylase from rat hepatocytes. Biochem J 267(2):343–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kwon YT, Kashina AS, Davydov IV, Hu RG, An JY, Seo JW et al (2002) An essential role of N-terminal arginylation in cardiovascular development. Science 297(5578):96–99. https://doi.org/10.1126/science.1069531

    Article  CAS  PubMed  Google Scholar 

  25. Kaji H, Hara H, Lamon KD (1980) Fixation of cellular aging processes by SV40 virus transformation. Mech Ageing Dev 12(2):197–209

    Article  CAS  PubMed  Google Scholar 

  26. Lamon KD, Kaji H (1980) Arginyl-tRNA transferase activity as a marker of cellular aging in peripheral rat tissues. Exp Gerontol 15(1):53–64

    Article  CAS  PubMed  Google Scholar 

  27. Kaji H, Kaji A (2011) Protein modification by arginylation. Chem Biol 18(1):6–7. S1074-5521(11)00005-6 [pii]. https://doi.org/10.1016/j.chembiol.2011.01.004

    Article  CAS  PubMed  Google Scholar 

  28. Kaji H, Kaji A (2012) Global cellular regulation including cardiac function by post-translational protein arginylation. J Mol Cell Cardiol 53(3):314–316. S0022-2828(12)00221-0 [pii]. https://doi.org/10.1016/j.yjmcc.2012.06.009

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Kaji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kaji, H., Kaji, A. (2023). Recollection of How We Came Across the Protein Modification with Amino Acids by Aminoacyl tRNA-Protein Transferase. In: Kashina, A.S. (eds) Protein Arginylation. Methods in Molecular Biology, vol 2620. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2942-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2942-0_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2941-3

  • Online ISBN: 978-1-0716-2942-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics