Skip to main content

Subcellular Quantitation of ADP-Ribosylation by High-Content Microscopy

  • Protocol
  • First Online:
Poly(ADP-Ribose) Polymerase

Abstract

ADP-ribosylation is a posttranslational modification with many functions ranging from the DNA damage response to transcriptional regulation. While nuclear ADP-ribosylation has been extensively studied in the context of genotoxic stress mediated by PARP1, signaling by other members of the family and in other cellular compartments is still not as well understood. In recent years, however, progress has been made with the development of new tools for detection of ADP-ribosylation by immunofluorescence, which allows for a spatial differentiation of signal intensity for different cellular compartments. Here, we present our method for the detection and quantification of compartment-specific ADP-ribosylation by immunofluorescence and show why the engineered macrodomain eAf5121 might be the best tool to date.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Collier RJ, Cole HA (1969) Diphtheria toxin subunit active in vitro. Science 164:1179–1181

    Article  CAS  Google Scholar 

  2. Collier RJ, Pappenheimer AM Jr (1964) Studies on the mode of action of diphtheria toxin. II. Effect of toxin on amino acid incorporation in cell-free systems. J Exp Med 120:1019–1039

    Article  CAS  Google Scholar 

  3. Strauss N, Hendee ED (1959) The effect of diphtheria toxin on the metabolism of HeLa cells. J Exp Med 109:145–163

    Article  CAS  Google Scholar 

  4. Chambon P, Weill JD, Mandel P (1963) Nicotinamide mononucleotide activation of new DNA-dependent polyadenylic acid synthesizing nuclear enzyme. Biochem Biophys Res Commun 11:39–43

    Article  CAS  Google Scholar 

  5. Lord CJ, Ashworth A (2017) PARP inhibitors: synthetic lethality in the clinic. Science 355:1152–1158

    Article  CAS  Google Scholar 

  6. Luscher B, Butepage M, Eckei L, Krieg S, Verheugd P, Shilton BH (2018) ADP-ribosylation, a multifaceted posttranslational modification involved in the control of cell physiology in health and disease. Chem Rev 118:1092–1136

    Article  Google Scholar 

  7. Cohen MS, Chang P (2018) Insights into the biogenesis, function, and regulation of ADP-ribosylation. Nat Chem Biol 14:236–243

    Article  CAS  Google Scholar 

  8. Gupte R, Liu Z, Kraus WL (2017) PARPs and ADP-ribosylation: recent advances linking molecular functions to biological outcomes. Genes Dev 31:101–126

    Article  CAS  Google Scholar 

  9. Huang D, Kraus WL (2022) The expanding universe of PARP1-mediated molecular and therapeutic mechanisms. Mol Cell 82:2315–2334

    Article  CAS  Google Scholar 

  10. Luscher B, Ahel I, Altmeyer M, Ashworth A, Bai P, Chang P et al (2021) ADP-ribosyltransferases, an update on function and nomenclature. FEBS J Early. View:febs.16142

    Google Scholar 

  11. Boehi F, Manetsch P, Hottiger MO (2021) Interplay between ADP-ribosyltransferases and essential cell signaling pathways controls cellular responses. Cell Discov 7:104

    Article  CAS  Google Scholar 

  12. Dolle C, Niere M, Lohndal E, Ziegler M (2010) Visualization of subcellular NAD pools and intra-organellar protein localization by poly-ADP-ribose formation. Cell Mol Life Sci 67:433–443

    Article  Google Scholar 

  13. Stromland O, Diab J, Ferrario E, Sverkeli LJ, Ziegler M (2021) The balance between NAD(+) biosynthesis and consumption in ageing. Mech Ageing Dev 199:111569

    Article  Google Scholar 

  14. Hopp AK, Teloni F, Bisceglie L, Gondrand C, Raith F, Nowak K et al (2021) Mitochondrial NAD(+) controls nuclear ARTD1-induced ADP-ribosylation. Mol Cell 81(340-354):e5

    Google Scholar 

  15. Challa S, Ryu KW, Whitaker AL, Abshier JC, Camacho CV, Kraus WL (2022) Development and characterization of new tools for detecting poly(ADP-ribose) in vitro and in vivo. Elife 11:e72464

    Article  CAS  Google Scholar 

  16. Hendriks IA, Larsen SC, Nielsen ML (2019) An advanced strategy for comprehensive profiling of ADP-ribosylation sites using mass spectrometry-based proteomics. Mol Cell Proteomics 18:1010–1026

    Article  CAS  Google Scholar 

  17. Martello R, Leutert M, Jungmichel S, Bilan V, Larsen SC, Young C et al (2016) Proteome-wide identification of the endogenous ADP-ribosylome of mammalian cells and tissue. Nat Commun 7:12917

    Article  CAS  Google Scholar 

  18. Hopp AK, Hottiger MO (2021) Uncovering the invisible: mono-ADP-ribosylation moved into the spotlight. Cells 10:680

    Article  CAS  Google Scholar 

  19. Kawamitsu H, Hoshino H, Okada H, Miwa M, Momoi H, Sugimura T (1984) Monoclonal antibodies to poly(adenosine diphosphate ribose) recognize different structures. Biochemistry 23:3771–3777

    Article  CAS  Google Scholar 

  20. Narendja FM, Sauermann G (1994) The use of biotinylated poly(ADP-ribose) for studies on poly(ADP-ribose)-protein interaction. Anal Biochem 220:415–419

    Article  CAS  Google Scholar 

  21. Jiang H, Kim JH, Frizzell KM, Kraus WL, Lin H (2010) Clickable NAD analogues for labeling substrate proteins of poly(ADP-ribose) polymerases. J Am Chem Soc 132:9363–9372

    Article  CAS  Google Scholar 

  22. Lehner M, Rieth S, Hollmuller E, Spliesgar D, Mertes B, Stengel F et al (2022) Profiling of the ADP-ribosylome in living cells. Angew Chem Int Ed Engl 61:e202200977

    Article  CAS  Google Scholar 

  23. Lu AZ, Abo R, Ren Y, Gui B, Mo JR, Blackwell D et al (2019) Enabling drug discovery for the PARP protein family through the detection of mono-ADP-ribosylation. Biochem Pharmacol 167:97–106

    Article  CAS  Google Scholar 

  24. Gibson BA, Conrad LB, Huang D, Kraus WL (2017) Generation and characterization of recombinant antibody-like ADP-ribose binding proteins. Biochemistry 56:6305–6316

    Article  CAS  Google Scholar 

  25. Nowak K, Rosenthal F, Karlberg T, Butepage M, Thorsell AG, Dreier B et al (2020) Engineering Af1521 improves ADP-ribose binding and identification of ADP-ribosylated proteins. Nat Commun 11:5199

    Article  CAS  Google Scholar 

  26. Richards R, Schwartz HR, Honeywell ME, Stewart MS, Cruz-Gordillo P, Joyce AJ et al (2020) Drug antagonism and single-agent dominance result from differences in death kinetics. Nat Chem Biol 16:791–800

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Tobias Suter and Dr. Lorenza Ferretti (both from the Department of Molecular Mechanisms of Disease, University of Zurich) for the helpful discussion, thorough proofreading, and for editorial assistance. ADP-ribosylation research in the laboratory of M.O.H. is funded by the Kanton of Zurich and the Swiss National Science Foundation (grant no. 310030_205202 and IZLIZ3_200237).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael O. Hottiger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Muskalla, L., Güldenpfennig, A., Hottiger, M.O. (2023). Subcellular Quantitation of ADP-Ribosylation by High-Content Microscopy. In: Tulin, A.V. (eds) Poly(ADP-Ribose) Polymerase. Methods in Molecular Biology, vol 2609. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2891-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2891-1_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2890-4

  • Online ISBN: 978-1-0716-2891-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics