Skip to main content

Analysis of Collective Migration Patterns Within Tumors

  • Protocol
  • First Online:
Cell Migration in Three Dimensions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2608))

  • 1252 Accesses

Abstract

Metastasis is a hallmark of cancer and the leading cause of mortality among cancer patients. Cancer, in its most deadly form, is thus not only a disease of uncontrolled cell growth but also a disease of uncontrolled cell migration. The study of tumor cell migration requires both experimental systems that are representative of the complex tumor environment as well as quantitative tools to analyze migration patterns. In this chapter, we focus on experimental and analytical methods to capture and analyze cell migration in live explants from mouse intestinal tumors. We first describe a protocol to extract and perform ex vivo live imaging on intestinal tumors in mice. We then provide a step-by-step image analysis workflow using freely available software and custom analysis scripts for extracting several parameters related to collective cell migration and cell and tissue organization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Friedl P, Gilmour D (2009) Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 10:445–457

    Article  CAS  Google Scholar 

  2. Clark AG, Vignjevic DM (2015) Modes of cancer cell invasion and the role of the microenvironment. Curr Opin Cell Biol 36:13–22

    Article  CAS  Google Scholar 

  3. SEER (2017) Cancer as a disease. US NIH-NCI, Bethesda. https://training.seer.cancer.gov/disease/categories/classification.html

    Google Scholar 

  4. Chanrion M, Kuperstein I, Barrière C, El Marjou F, Cohen D, Vignjevic D, Stimmer L, Paul-Gilloteaux P, Bièche I, Tavares SDR et al (2014) Concomitant Notch activation and p53 deletion trigger epithelial-to-mesenchymal transition and metastasis in mouse gut. Nat Commun 5:25–38

    Article  Google Scholar 

  5. Staneva R, Marjou FE, Barbazan J, Krndija D, Richon S, Clark AG, Vignjevic DM (2019) Cancer cells in the tumor core exhibit spatially coordinated migration patterns. J Cell Sci 132:jcs220277

    Google Scholar 

  6. Rasband WS (1997) ImageJ. US NIH, Bethesda. https://imagej.nih.gov/ij/

    Google Scholar 

  7. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  Google Scholar 

  8. de Chaumont F, Dallongeville S, Chenouard N, Hervé N, Pop S, Provoost T, Meas-Yedid V, Pankajakshan P, Lecomte T, Le Montagner Y et al (2012) Icy: an open bioimage informatics platform for extended reproducible research. Nat Methods 9:690–696

    Article  Google Scholar 

  9. Stirling DR, Swain-Bowden MJ, Lucas AM, Carpenter AE, Cimini BA, Goodman A (2021) CellProfiler 4: improvements in speed, utility and usability. BMC Bioinf 22(1):433

    Google Scholar 

  10. Schmidt U, Weigert M, Broaddus C, Myers G (2018) Cell detection with star-convex polygons BT. In: Frangi AF, Schnabel JA, Davatzikos C, Alberola-López C, Fichtinger G (eds) Medical image computing and computer assisted intervention – MICCAI 2018. Springer, Berlin, pp 265–273

    Chapter  Google Scholar 

  11. Weigert M, Schmidt U, Haase R, Sugawara K, Myers G (2020) Star-convex polyhedra for 3D object detection and segmentation in microscopy. In: 2020 IEEE Winter conference on Applications of Computer Vision (WACV), pp 3655–3662

    Chapter  Google Scholar 

  12. Tinevez J-Y, Perry N, Schindelin J, Hoopes GM, Reynolds GD, Laplantine E, Bednarek SY, Shorte SL, Eliceiri KW (2017) TrackMate: an open and extensible platform for single-particle tracking. Methods 115:80–90

    Article  CAS  Google Scholar 

  13. Ershov D, Phan M-S, Pylvänäinen JW, Rigaud SU, Le Blanc L, Charles-Orszag A, Conway JRW, Laine RF, Roy NH, Bonazzi D et al. (2021) Bringing TrackMate into the era of machine-learning and deep-learning. bioRxiv2021.09.03.458852

    Google Scholar 

  14. Crocker JC, Grier DG (1996) Methods of digital video microscopy for colloidal studies. J Colloid Interface Sci 179:298–310

    Article  CAS  Google Scholar 

  15. Sadati M, Taheri Qazvini N, Krishnan R, Park CY, Fredberg JJ (2013) Collective migration and cell jamming. Differentiation 86:121–125

    Article  CAS  Google Scholar 

  16. Garcia S, Hannezo E, Elgeti J, Joanny J-F, Silberzan P, Gov NS (2015) Physics of active jamming during collective cellular motion in a monolayer. Proc Natl Acad Sci 112:15314–15319

    Article  CAS  Google Scholar 

  17. Park J-A, Kim JH, Bi D, Mitchel JA, Qazvini NT, Tantisira K, Park CY, McGill M, Kim S-H, Gweon B et al (2015) Unjamming and cell shape in the asthmatic airway epithelium. Nat Mater 14:1040–1048

    Article  CAS  Google Scholar 

  18. Palamidessi A, Malinverno C, Frittoli E, Corallino S, Barbieri E, Sigismund S, Beznoussenko GV, Martini E, Garre M, Ferrara I et al (2019) Unjamming overcomes kinetic and proliferation arrest in terminally differentiated cells and promotes collective motility of carcinoma. Nat Mater 18:1252–1263

    Article  CAS  Google Scholar 

  19. Kepten E, Weron A, Sikora G, Burnecki K, Garini Y (2015) Guidelines for the fitting of anomalous diffusion mean square displacement graphs from single particle tracking experiments. PLoS One 10:e0117722

    Article  Google Scholar 

  20. Selmeczi D, Mosler S, Hagedorn PH, Larsen NB, Flyvbjerg H (2005) Cell motility as persistent random motion: theories from experiments. Biophys J 89:912–931

    Article  CAS  Google Scholar 

  21. Maiuri P, Rupprecht J-F, Wieser S, Ruprecht V, Bénichou O, Carpi N, Coppey M, De Beco S, Gov N, Heisenberg C-P et al (2015) Actin flows mediate a universal coupling between cell speed and cell persistence. Cell 161:374–386

    Article  CAS  Google Scholar 

  22. Choi SM, Kim WH, Côté D, Park C-W, Lee H (2011) Blood cell assisted in vivo particle image velocimetry using the confocal laser scanning microscope. Opt Express 19:4357–4368

    Article  CAS  Google Scholar 

  23. Vig DK, Hamby AE, Wolgemuth CW (2016) On the quantification of cellular velocity fields. Biophys J 110:1469–1475

    Article  CAS  Google Scholar 

  24. Raffel M, Willert CE, Scarano F, Kähler CJ, Wereley ST, Kompenhans J (2018) Particle image velocimetry: a practical guide. Springer, Cham

    Book  Google Scholar 

  25. Liberzon A, Käufer T, Bauer A, Vennemann P, Zimmer E (2021) OpenPIV-Python. https://doi.org/10.5281/zenodo.593157

  26. Vennemann P (2008) Particle image velocimetry for microscale blood flow measurement (Thesis)

    Google Scholar 

  27. Thielicke W, Stamhuis EJ (2014) PIVlab – towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. J Open Res Softw 2:e30

    Article  Google Scholar 

  28. Tseng Q, Duchemin-Pelletier E, Deshiere A, Balland M, Guillou H, Filhol O, Théry M (2012) Spatial organization of the extracellular matrix regulates cell–cell junction positioning. Proc Natl Acad Sci 201106377

    Google Scholar 

  29. Staple DB, Farhadifar R, Röper J-C, Aigouy B, Eaton S, Jülicher F (2010) Mechanics and remodelling of cell packings in epithelia. Eur Phys J E 33:117–127

    Article  CAS  Google Scholar 

  30. Bi D, Lopez JH, Schwarz JM, Manning ML (2015) A density-independent rigidity transition in biological tissues. Nat Phys 11:1074–1079

    Article  CAS  Google Scholar 

  31. Atia L, Bi D, Sharma Y, Mitchel JA, Gweon BA, Koehler S, DeCamp SJ, Lan B, Kim JH, Hirsch R et al (2018) Geometric constraints during epithelial jamming. Nat Phys 14:613–620

    Article  CAS  Google Scholar 

  32. Versaevel M, Grevesse T, Gabriele S (2012) Spatial coordination between cell and nuclear shape within micropatterned endothelial cells. Nat Commun 3:671

    Article  Google Scholar 

  33. Preibisch S, Saalfeld S, Tomancak P (2009) Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics 25:1463–1465

    Article  CAS  Google Scholar 

  34. Parslow A, Cardona A, Bryson-Richardson RJ (2014) Sample drift correction following 4D confocal time-lapse imaging. J Vis Exp 12:51086

    Google Scholar 

  35. Aigouy B, Umetsu D, Eaton S (2016) Segmentation and quantitative analysis of epithelial tissues BT. In: Dahmann C (ed) Drosophila: methods and protocols. Springer, New York, pp 227–239

    Chapter  Google Scholar 

  36. Aigouy B, Cortes C, Liu S, Prud’Homme B (2020) EPySeg: a coding-free solution for automated segmentation of epithelia using deep learning. Development 147(dev194589)

    Google Scholar 

  37. Arganda-Carreras I, Kaynig V, Rueden C, Eliceiri KW, Schindelin J, Cardona A, Sebastian Seung H (2017) Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification. Bioinformatics 33:2424–2426

    Article  CAS  Google Scholar 

  38. Berg S, Kutra D, Kroeger T, Straehle CN, Kausler BX, Haubold C, Schiegg M, Ales J, Beier T, Rudy M et al (2019) ilastik: interactive machine learning for (bio)image analysis. Nat Methods 16:1226–1232

    Article  CAS  Google Scholar 

  39. Stringer C, Wang T, Michaelos M, Pachitariu M (2021) Cellpose: a generalist algorithm for cellular segmentation. Nat Methods 18:100–106

    Article  CAS  Google Scholar 

  40. Meijering E, Dzyubachyk O, Smal I (2012) Chapter nine – methods for cell and particle tracking. In: P. M. B. T.-M. in E. conn (ed) Imaging and spectroscopic analysis of living cells. Academic, Amsterdam, pp 183–200

    Chapter  Google Scholar 

Download references

Acknowledgments

We acknowledge Danijela Matic Vignjevic for helpful discussions and for use of data and protocols that were developed while working in her laboratory. AGC was funded by the Federal Ministry of Education and Research (BMBF) and the Baden-Württemberg Ministry of Science (MWK) as part of the Excellence Strategy of the German Federal and State Governments (NWG-GastroTumors to AGC). RS was funded by L'Institut Thématique Multi-Organisme Cancer (Plan Cancer 2014–2019), Fondation pour la Recherche Médicale (FRM FDT20170437130), and Ecole Doctorale Frontières du Vivant (FdV)—Fondation Bettencourt Schueller.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew G. Clark .

Editor information

Editors and Affiliations

1 Electronic Supplementary Movie Legends

Left: live imaging from an ex vivo intestinal tumor slice expressing nuclear GFP (nGFP, green) with Second Harmonic Generation (SHG, magenta) imaging to capture thick collagen bundles. Right: segmented and labeled image series using StarDist and tracked using TrackMate. Scale bar, 100 μm. HH:MM (MOV 4366 kb)

Left: live imaging of a 2D model of an early intestinal tumor using primary organoids with membrane Tomato labeling. Middle: tissue movements from subsequent frames quantified using particle image velocimetry (PIV). Right: cell segmentations and labeling using TissueAnalyzer. Scale Bar, 50 μm. HH:MM (MOV 5953 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Staneva, R., Clark, A.G. (2023). Analysis of Collective Migration Patterns Within Tumors. In: Margadant, C. (eds) Cell Migration in Three Dimensions. Methods in Molecular Biology, vol 2608. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2887-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2887-4_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2886-7

  • Online ISBN: 978-1-0716-2887-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics