Skip to main content

Profiling Genome-Wide Specificity of dCpf1 Cytidine Base Editors Using Digenome-Seq

  • Protocol
  • First Online:
Base Editors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2606))

Abstract

Digenome-seq is a powerful approach for determining the genome-wide specificity of programmable nuclease including CRISPR-Cas9 and CRISPR-Cpf1 (also known as Cas12a) and programmable deaminase including cytosine base editors (CBEs) and adenine base editors (ABEs). To define the genome-wide specificity of dLbCpf1-BE (also known as dLbCas12a-BE), genomic DNA is first incubated with dLbCpf1-BE, which induces C-to-U conversion at on-target and off-target sites, and then treated with a mixture of E. coli uracil DNA glycosylase (UDG) and Endonuclease VIII, which creates single-strand breaks (SSBs) by removing uracil in vitro. Digested genomic DNA is subjected to WGS, and then sequencing reads are aligned to the reference genome, resulting in straight alignments at on-target and off-target sites. The in vitro cleavage sites related to the straight alignments can be identified using the Digenome-seq computer tool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533(7603):420–424. https://doi.org/10.1038/nature17946

    Article  CAS  Google Scholar 

  2. Nishida K, Arazoe T, Yachie N, Banno S, Kakimoto M, Tabata M, Mochizuki M, Miyabe A, Araki M, Hara KY, Shimatani Z, Kondo A (2016) Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353(6305). https://doi.org/10.1126/science.aaf8729

  3. Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR (2017) Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551(7681):464–471. https://doi.org/10.1038/nature24644

    Article  CAS  Google Scholar 

  4. Li X, Wang Y, Liu Y, Yang B, Wang X, Wei J, Lu Z, Zhang Y, Wu J, Huang X, Yang L, Chen J (2018) Base editing with a Cpf1-cytidine deaminase fusion. Nat Biotechnol 36(4):324–327. https://doi.org/10.1038/nbt.4102

    Article  CAS  Google Scholar 

  5. Richter MF, Zhao KT, Eton E, Lapinaite A, Newby GA, Thuronyi BW, Wilson C, Koblan LW, Zeng J, Bauer DE, Doudna JA, Liu DR (2020) Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat Biotechnol 38(7):883–891. https://doi.org/10.1038/s41587-020-0453-z

    Article  CAS  Google Scholar 

  6. Ryu SM, Koo T, Kim K, Lim K, Baek G, Kim ST, Kim HS, Kim DE, Lee H, Chung E, Kim JS (2018) Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. Nat Biotechnol 36(6):536–539. https://doi.org/10.1038/nbt.4148

    Article  CAS  Google Scholar 

  7. Zafra MP, Schatoff EM, Katti A, Foronda M, Breinig M, Schweitzer AY, Simon A, Han T, Goswami S, Montgomery E, Thibado J, Kastenhuber ER, Sanchez-Rivera FJ, Shi J, Vakoc CR, Lowe SW, Tschaharganeh DF, Dow LE (2018) Optimized base editors enable efficient editing in cells, organoids and mice. Nat Biotechnol 36(9):888–893. https://doi.org/10.1038/nbt.4194

    Article  CAS  Google Scholar 

  8. Yeh WH, Chiang H, Rees HA, Edge ASB, Liu DR (2018) In vivo base editing of post-mitotic sensory cells. Nat Commun 9(1):2184. https://doi.org/10.1038/s41467-018-04580-3

    Article  CAS  Google Scholar 

  9. Kim D, Lim K, Kim DE, Kim JS (2020) Genome-wide specificity of dCpf1 cytidine base editors. Nat Commun 11(1):4072. https://doi.org/10.1038/s41467-020-17889-9

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kim, D. (2023). Profiling Genome-Wide Specificity of dCpf1 Cytidine Base Editors Using Digenome-Seq. In: Bae, S., Song, B. (eds) Base Editors. Methods in Molecular Biology, vol 2606. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2879-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2879-9_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2878-2

  • Online ISBN: 978-1-0716-2879-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics