Skip to main content

Quantitative Analysis of Microtubule Organization in Leaf Epidermis Pavement Cells

  • Protocol
  • First Online:
The Plant Cytoskeleton

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2604))

  • 743 Accesses

Abstract

Leaf epidermis pavement cells form highly complex shapes with interlocking lobes and necks at their anticlinal walls. The microtubule cytoskeleton plays essential roles in pavement cell morphogenesis, in particular at necks. Vice versa, shape generates stress patterns that regulate microtubule organization. Genetic or pharmacological perturbations that affect pavement cell shape often affect microtubule organization. Pavement cell shape and microtubule organization are therefore closely interconnected. Here, we present commonly used approaches for the quantitative analysis of pavement cell shape characteristics and of microtubule organization. In combination with ablation experiments, these methods can be applied to investigate how different genotypes (or treatments) affect the organization and stress responsiveness of the microtubule cytoskeleton.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jacques E, Verbelen JP, Vissenberg K (2014) Review on shape formation in epidermal pavement cells of the Arabidopsis leaf. Funct Plant Biol 41:914–921

    Article  Google Scholar 

  2. Vofely RV, Gallagher J, Pisano GD, Bartlett M, Braybrook SA (2019) Of puzzles and pavements: a quantitative exploration of leaf epidermal cell shape. New Phytol 221:540–552

    Article  CAS  Google Scholar 

  3. Zhang CH, Halsey LE, Szymanski DB (2011) The development and geometry of shape change in Arabidopsis thaliana cotyledon pavement cells. BMC Plant Biol 11

    Google Scholar 

  4. Sampathkumar A, Krupinski P, Wightman R, Milani P, Berquand A, Boudaoud A, Hamant O, Jonsson H, Meyerowitz EM (2014) Subcellular and supracellular mechanical stress prescribes cytoskeleton behavior in Arabidopsis cotyledon pavement cells. elife 3

    Google Scholar 

  5. Majda M, Grones P, Sintorn IM, Vain T, Milani P, Krupinski P, Zagorska-Marek B, Viotti C, Jonsson H, Mellerowicz EJ et al (2017) Mechanochemical polarization of contiguous cell walls shapes plant pavement cells. Dev Cell 43:290–304

    Article  CAS  Google Scholar 

  6. Belteton SA, Li WL, Yanagisawa M, Hatam FA, Quinn MI, Szymanski MK, Marley MW, Turner JA, Szymanski DB (2021) Real-time conversion of tissue-scale mechanical forces into an interdigitated growth pattern. Nat Plants 7:826–841

    Article  CAS  Google Scholar 

  7. Eng RC, Schneider R, Matz TW, Carter R, Ehrhardt DW, Jonsson H, Nikoloski Z, Sampathkumar A (2021) KATANIN and CLASP function at different spatial scales to mediate microtubule response to mechanical stress in Arabidopsis cotyledons. Curr Biol 31:3262–3274

    Article  CAS  Google Scholar 

  8. Wong JH, Kato T, Belteton SA, Shimizu R, Kinoshita N, Higaki T, Sakumura Y, Szymanski DB, Hashimoto T (2019) Basic Proline-rich protein-mediated microtubules are essential for lobe growth and flattened cell geometry. Plant Physiol 181:1535–1551

    Article  CAS  Google Scholar 

  9. Mitra D, Kumari P, Quegwer J, Klemm S, Möller B, Poeschl Y, Pflug P, Stamm G, Abel S, Bürstenbinder K (2019) Microtubule-associated protein IQ67 DOMAIN5 regulates morphogenesis of leaf pavement cells in Arabidopsis thaliana. J Exp Bot 70:529–543

    Article  CAS  Google Scholar 

  10. Lin W, Tang W, Pan X, Huang A, Gao X, Anderson CT, Yang Z (2022) Arabidopsis pavement cell morphogenesis requires FERONIA binding to pectin for activation of ROP GTPase signaling. Curr Biol 32(497–507):e494

    Google Scholar 

  11. Tang W, Lin W, Zhou X, Guo J, Dang X, Li B, Lin D, Yang Z (2022) Mechano-transduction via the pectin-FERONIA complex activates ROP6 GTPase signaling in Arabidopsis pavement cell morphogenesis. Curr Biol 32(508–517):e503

    Google Scholar 

  12. Lauster T, Stöckle D, Gabor K, Haller T, Krieger N, Lotz P, Mayakrishnan R, Späth E, Zimmermann S, Livanos P et al (2022) Arabidopsis pavement cell shape formation involves spatially confined ROPGAP regulators. Curr Biol 32:532–544

    Article  CAS  Google Scholar 

  13. Zhang C, Lauster T, Tang W, Houbaert A, Zhu SF, Eeckhout D, De Smet I, De Jaeger G, Jacobs TB, Xu T et al (2022) ROPGAP-dependent interaction between brassinosteroid and ROP2-GTPase signaling controls pavement cell shape in Arabidopsis. Curr Biol 32:518–531

    Article  CAS  Google Scholar 

  14. Landrein B, Hamant O (2013) How mechanical stress controls microtubule behavior and morphogenesis in plants: history, experiments and revisited theories. Plant J 75:324–338

    Article  CAS  Google Scholar 

  15. Belteton SA, Li WL, Yanagisawa M, Hatam FA, Quinn MI, Szymanski MK, Marley MW, Turner JA, Szymanski DB (2021) Real-time conversion of tissue-scale mechanical forces into an interdigitated growth pattern. Nat Plants 7:989–989

    Article  Google Scholar 

  16. Boudaoud A, Burian A, Borowska-Wykret D, Uyttewaal M, Wrzalik R, Kwiatkowska D, Hamant O (2014) FibrilTool, an ImageJ plug-in to quantify fibrillar structures in raw microscopy images. Nat Protoc 9:457–463

    Article  CAS  Google Scholar 

  17. Püspöki Z, Storath M, Sage D, Unser M (2016) Transforms and operators for directional bioimage analysis: a survey. Adv Anat Embryol Cell Biol 219:69–93

    Article  Google Scholar 

  18. Celler K, Fujita M, Kawamura E, Ambrose C, Herburger K, Holzinger A, Wasteneys GO (2016) Microtubules in plant cells: strategies and methods for immunofluorescence, transmission electron microscopy, and live cell imaging. Methods Mol Biol 1365:155–184

    Article  CAS  Google Scholar 

  19. Lincoln C, Britton JH, Estelle M (1990) Growth and development of the axr1 mutants of Arabidopsis. Plant Cell 2:1071–1080

    CAS  Google Scholar 

  20. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  Google Scholar 

  21. Möller B, Glaß M, Misiak D, Posch S (2016) MiToBo - a toolbox for image processing and analysis. J Open Res Software 4:e17

    Article  Google Scholar 

  22. Wu TC, Belteton S, Pack J, Szymanski DB, Umulis D (2016) LobeFinder: a convex hull-based method for quantitative boundary analyses of lobed plant cells. Plant Physiol 171:2331–2342

    Article  CAS  Google Scholar 

  23. Nowak J, Eng RC, Matz T, Waack M, Persson S, Sampathkumar A, Nikoloski Z (2021) A network-based framework for shape analysis enables accurate characterization of leaf epidermal cells. Nat Commun 12

    Google Scholar 

  24. Möller B, Poeschl Y, Plötner R, Bürstenbinder K (2017) PaCeQuant: a tool for high-throughput quantification of pavement cell shape characteristics. Plant Physiol 175:998–1017

    Article  Google Scholar 

  25. Möller B, Poeschl Y, Klemm S, Bürstenbinder K (2019) Morphological analysis of leaf epidermis pavement cells with PaCeQuant. Methods Mol Biol 1992:329–349

    Article  Google Scholar 

  26. Poeschl Y, Möller B, Müller L, Bürstenbinder K (2020) User-friendly assessment of pavement cell shape features with PaCeQuant: novel functions and tools. Methods Cell Biol 160:349–363

    Article  CAS  Google Scholar 

  27. Möller B, Zergiebel L, Bürstenbinder K (2019) Quantitative and comparative analysis of global patterns of (microtubule) cytoskeleton organization with CytoskeletonAnalyzer2D. Methods Mol Biol 1992:151–171

    Article  Google Scholar 

  28. Bürstenbinder K, Möller B, Plötner R, Stamm G, Hause G, Mitra D, Abel S (2017) The IQD family of calmodulin-binding proteins links calcium signaling to microtubules, membrane subdomains, and the nucleus. Plant Physiol 173:1692–1708

    Article  Google Scholar 

  29. Freeman H, Davis LS (1977) A corner-finding algorithm for chain-coded curves. Ieee T Comput 26:297–303

    Article  Google Scholar 

  30. Belteton SA, Sawchuk MG, Donohoe BS, Scarpella E, Szymanski DB (2018) Reassessing the roles of PIN proteins and anticlinal microtubules during pavement cell morphogenesis. Plant Physiol 176:432–449

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Katharina Bürstenbinder would like to thank the Deutsche Forschungsgemeinschaft (DFG) (grant numbers BU2955/2-1 and BU2955/1-2), the German-Israeli Foundation for Scientific Research and Development (GIF) (grant number G-1482-423.13/2018), and the Leibniz Association for funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Birgit Möller or Katharina Bürstenbinder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Klemm, S., Buhl, J., Möller, B., Bürstenbinder, K. (2023). Quantitative Analysis of Microtubule Organization in Leaf Epidermis Pavement Cells. In: Hussey, P.J., Wang, P. (eds) The Plant Cytoskeleton. Methods in Molecular Biology, vol 2604. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2867-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2867-6_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2866-9

  • Online ISBN: 978-1-0716-2867-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics