Skip to main content

Strategies for Monitoring “Ubiquitin C-Terminal Hydrolase 1” (Yuh1) Activity

  • Protocol
  • First Online:
The Ubiquitin Code

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2602))

  • 837 Accesses

Abstract

The family of ubiquitin C-terminal hydrolases (UCHs(releases ε-linked amide bonds positioned at the C-terminus of ubiquitin. UCHL3 is a highly conserved and dual functional member of this family, recognizing C-terminal extensions of two paralogous modifiers: ubiquitin and NEDD8. The Saccharomyces cerevisiae orthologue of UCHL3, namely, Yuh1, is the only UCH family member in this organism. Like UCHL3, Yuh1 recognizes ubiquitin as well as Rub1, the direct orthologue of NEDD8 in S. cerevisiae. We describe here a method for examining the activity of bacteria and yeast expressed Yuh1 by monitoring the C-terminal trimming of UBB + 1 and Rub1 + 1 through immunoblotting and the increased AMC fluorescence readout detected through a plate reader.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Geurink PP, van der Heden van Noort GJ, Mulder MPC et al (2019) Profiling DUBs and Ubl-specific proteases with activity-based probes. Methods Enzymol 618:357–387. https://doi.org/10.1016/bs.mie.2018.12.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hermanns T, Pichlo C, Woiwode I et al (2018) A family of unconventional deubiquitinases with modular chain specificity determinants. Nat Commun 9(1):799. https://doi.org/10.1038/s41467-018-03148-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hermanns T, Pichlo C, Baumann U et al (2022) A structural basis for the diverse linkage specificities within the ZUFSP deubiquitinase family. Nat Commun 13(1):401. https://doi.org/10.1038/s41467-022-28049-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Misaghi S, Galardy PJ, Meester WJ et al (2005) Structure of the ubiquitin hydrolase UCH-L3 complexed with a suicide substrate. J Biol Chem 280(2):1512–1520. https://doi.org/10.1074/jbc.M410770200

    Article  CAS  PubMed  Google Scholar 

  5. Johnston SC, Riddle SM, Cohen RE et al (1999) Structural basis for the specificity of ubiquitin C-terminal hydrolases. EMBO J 18(14):3877–3887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Linghu B, Callis J, Goebl MG (2002) Rub1p processing by Yuh1p is required for wild-type levels of Rub1p conjugation to Cdc53p. Eukaryot Cell 1(3):491–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mendoza HM, Shen L-n, Botting C et al (2003) NEDP1, a highly conserved cysteine protease that deNEDDylates Cullins. J Biol Chem 278(28):25637–25643

    Article  CAS  PubMed  Google Scholar 

  8. Pick E (2020) The necessity of NEDD8/Rub1 for vitality and its association with mitochondria-derived oxidative stress. Redox Biol 37:101765. https://doi.org/10.1016/j.redox.2020.101765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sinha A, Israeli R, Cirigliano A et al (2020) The COP9 signalosome mediates the Spt23 regulated fatty acid desaturation and ergosterol biosynthesis. FASEB J 34:4870–4889. https://doi.org/10.1096/fj.201902487R

    Article  CAS  PubMed  Google Scholar 

  10. Yu Z, Kleifeld O, Lande-Atir A et al (2011) Dual function of Rpn5 in two PCI complexes, the 26S proteasome and COP9 signalosome. Mol Biol Cell 22(7):911–920. https://doi.org/10.1091/mbc.E10-08-0655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Scott DC, Monda JK, Grace CR et al (2010) A dual E3 mechanism for Rub1 ligation to Cdc53. Mol Cell 39(5):784–796. https://doi.org/10.1016/j.molcel.2010.08.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dennissen FJ, Kholod N, Hermes DJ et al (2011) Mutant ubiquitin (UBB+1) associated with neurodegenerative disorders is hydrolyzed by ubiquitin C-terminal hydrolase L3 (UCH-L3). FEBS Lett 585(16):2568–2574. https://doi.org/10.1016/j.febslet.2011.06.037

    Article  CAS  PubMed  Google Scholar 

  13. Chadwick L, Gentle L, Strachan J et al (2012) Review: unchained maladie - a reassessment of the role of Ubb(+1) -capped polyubiquitin chains in Alzheimer's disease. Neuropathol Appl Neurobiol 38(2):118–131. https://doi.org/10.1111/j.1365-2990.2011.01236.x

    Article  CAS  PubMed  Google Scholar 

  14. Lindsten K, de Vrij FM, Verhoef LG et al (2002) Mutant ubiquitin found in neurodegenerative disorders is a ubiquitin fusion degradation substrate that blocks proteasomal degradation. J Cell Biol 157(3):417–427. https://doi.org/10.1083/jcb.200111034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Krutauz D, Reis N, Nakasone MA et al (2014) Extended ubiquitin species are protein-based DUB inhibitors. Nat Chem Biol 10(8):664–670. https://doi.org/10.1038/nchembio.1574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hermanns T, Hofmann K (2019) Bacterial DUBs: deubiquitination beyond the seven classes. Biochem Soc Trans 47(6):1857–1866. https://doi.org/10.1042/BST20190526

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Michael Glickman for providing us with plasmids. Studies at the Pick lab are supported by the Israel Science Foundation (ISF) grant no. 192/20 and Bet Margolin fellowships for E. B. and S. S. The authors would like to acknowledge the networking support by the ProteoCure COST action (CA20113).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elah Pick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Saad, S., Berda, E., Klein, Y., Issa, S., Pick, E. (2023). Strategies for Monitoring “Ubiquitin C-Terminal Hydrolase 1” (Yuh1) Activity. In: Rodriguez, M.S., Barrio, R. (eds) The Ubiquitin Code. Methods in Molecular Biology, vol 2602. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2859-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2859-1_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2858-4

  • Online ISBN: 978-1-0716-2859-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics