Skip to main content

Preparation of Recombinant Histones and Widom 601 DNA for Reconstitution of Nucleosome Core Particles

  • Protocol
  • First Online:
DNA-Protein Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2599))

Abstract

Expression and purification of individual histone proteins and amplification and purification of DNA are the initial steps toward reconstituting nucleosome core particles. Histone proteins are expressed in E. coli, extracted from inclusion bodies, and purified using ion-exchange chromatography. DNA containing the 147 base pair Widom 601 sequence is amplified in bacteria using a plasmid containing multiple copies of this strong nucleosome positioning sequence. Following alkaline lysis of bacteria, DNA is extracted using phenol and chloroform, released from the vector via restriction enzyme digestion, and purified in subsequent precipitation and ion-exchange chromatography steps. Here, we describe a combination of two protocols: one to express and purify recombinant human histones and the other to amplify and purify Widom 601 DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Simon MD, Chu F, Racki LR et al (2007) The site-specific installation of methyl-lysine analogs into recombinant histones. Cell 128:1003–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shogren-Knaak MA, Peterson CL (2004) Creating designer histones by native chemical ligation. Methods Enzymol 375:62–76

    Article  CAS  PubMed  Google Scholar 

  3. Li F, Allahverdi A, Yang R et al (2011) A direct method for site-specific protein acetylation. Angew Chem Int Ed 50:9611–9614

    Article  CAS  Google Scholar 

  4. Dhall A, Weller CE, Chatterjee C (2016) Rapid Semisynthesis of acetylated and Sumoylated histone analogs. Methods Enzymol 574:149–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dyer PN, Edayathumangalam RS, White CL et al (2004) Reconstitution of nucleosome core particles from recombinant histones and DNA. Methods Enzymol 375:23–44

    Article  CAS  PubMed  Google Scholar 

  6. Van Emmerik CL, Van Ingen H (2019) Unspinning chromatin: revealing the dynamic nucleosome landscape by NMR. Prog Nucl Magn Reson Spectrosc 110:1–19

    Article  PubMed  Google Scholar 

  7. Fierz B, Poirier MG (2019) Biophysics of chromatin dynamics. Annu Rev Biophys 48:321–345

    Article  CAS  PubMed  Google Scholar 

  8. Tanaka Y, Tawaramoto-Sasanuma M, Kawaguchi S et al (2004) Expression and purification of recombinant human histones. Methods 33:3–11

    Article  CAS  PubMed  Google Scholar 

  9. Kujirai T, Arimura Y, Fujita R et al (2018) Histone variants, methods and protocols. Methods Mol Biol 1832:3–20

    Article  CAS  PubMed  Google Scholar 

  10. Cuvier O, Fierz B (2017) Dynamic chromatin technologies: from individual molecules to epigenomic regulation in cells. Nat Rev Genet 18:457–472

    Article  CAS  PubMed  Google Scholar 

  11. Gansen A, Valeri A, Hauger F et al (2009) Nucleosome disassembly intermediates characterized by single-molecule FRET. Proc Natl Acad Sci 106:15308–15313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pelaz DA, Yerkesh Z, Kirchgäßner S et al (2020) Examining histone modification crosstalk using immobilized libraries established from ligation-ready nucleosomes. Chem Sci 11:9218–9225

    Article  Google Scholar 

  13. Widom J (2001) Role of DNA sequence in nucleosome stability and dynamics. Q Rev Biophys 34:269–324

    Article  CAS  PubMed  Google Scholar 

  14. Choy JS, Wei S, Lee JY et al (2010) DNA methylation increases nucleosome compaction and rigidity. J Am Chem Soc 132:1782–1783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Taylor J-S (2015) Design, synthesis, and characterization of nucleosomes containing site-specific DNA damage. DNA Repair 36:59–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ngo TTM, Zhang Q, Zhou R et al (2015) Asymmetric unwrapping of nucleosomes under tension directed by DNA local flexibility. Cell 160:1135–1144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lowary PT, Widom J (1998) New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J Mol Biol 276:19–42

    Article  CAS  PubMed  Google Scholar 

  18. Thåström A, Lowary PT, Widlund HR et al (1999) Sequence motifs and free energies of selected natural and non-natural nucleosome positioning DNA sequences. J Mol Biol 288:213–229

    Google Scholar 

  19. Luger K, Rechsteiner TJ, Richmond TJ (1999) Preparation of nucleosome core particle from recombinant histones. Methods Enzymol 304:3–19

    Article  CAS  PubMed  Google Scholar 

  20. Luger K, Rechsteiner TJ, Richmond TJ (1999) Expression and purification of recombinant histones and nucleosome reconstitution. Chromatin Protocols 119:1–16

    Article  CAS  Google Scholar 

  21. Dutta A, Workman JL (2017) In vitro assembly of nucleosomes for binding/remodeling assays. Methods Mol Biol 1528:1–17

    Article  CAS  PubMed  Google Scholar 

  22. Nodelman IM, Patel A, Levendosky RF et al (2020) Reconstitution and purification of nucleosomes with recombinant histones and purified DNA. Curr Protoc Mol Biol 133:e130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee KM and Narlikar G (2001) Assembly of nucleosomal templates by salt dialysis. Curr Protoc Mol Biol. Chapter 21:Unit 21.6

    Google Scholar 

  24. Rogge RA, Kalashnikova AA, Muthurajan UM et al (2013) Assembly of nucleosomal arrays from recombinant core histones and nucleosome positioning DNA. J Vis Exp 79:e50354

    Google Scholar 

  25. Hayes JJ, Lee KM (1997) In vitro reconstitution and analysis of mononucleosomes containing defined DNAs and proteins. Methods 12:2–9

    Article  CAS  PubMed  Google Scholar 

  26. Klinker H, Haas C, Harrer N et al (2014) Rapid purification of recombinant histones. PLoS One 9:e104029

    Article  PubMed  PubMed Central  Google Scholar 

  27. Luger K, Rechsteiner TJ, Flaus AJ et al (1997) Characterization of nucleosome core particles containing histone proteins made in bacteria. J Mol Biol 272:301–311

    Google Scholar 

  28. Welles HL, Giaquinto AR, Lindstrom RE (1971) Degradation of urea in concentrated aqueous solution. J Pharm Sci 60:1212–1216

    Article  CAS  PubMed  Google Scholar 

  29. Wingfield PT (2001) Use of protein folding reagents. Curr Protoc Protein Sci 1:A.3A

    Google Scholar 

  30. Kollipara L, Zahedi RP (2013) Protein carbamylation: in vivo modification or in vitro artefact? Proteomics 13:941–944

    Article  CAS  PubMed  Google Scholar 

  31. Stoddard CI, Feng S, Campbell MG et al (2018) A nucleosome bridging mechanism for activation of a maintenance DNA Methyltransferase. Mol Cell 73:73–83

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gibson BA, Doolittle LK, Schneider MWG et al (2019) Organization of Chromatin by intrinsic and regulated phase separation. Cell 179:470–484.e21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Palmer BR, Marinus MG (1994) The dam and dcm strains of Escherichia coli – a review. Gene 143:1–12

    Article  CAS  PubMed  Google Scholar 

  34. Glickman BW, Radman M (1980) Escherichia coli mutator mutants deficient in methylation-instructed DNA mismatch correction. Proc Natl Acad Sci 77:1063–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hazzalin CA, Mahadevan LC (2016) Histones, methods and protocols. Methods Mol Biol:173–198

    Google Scholar 

  36. Claycamp HG (1992) Phenol sensitization of DNA to subsequent oxidative damage in 8-hydroxyguanine assays. Carcinogenesis 13:1289–1292

    Article  CAS  PubMed  Google Scholar 

  37. Helbock HJ, Beckman KB, Shigenaga MK et al (1998) DNA oxidation matters: the HPLC–electrochemical detection assay of 8-oxo-deoxyguanosine and 8-oxo-guanine. Proc Natl Acad Sci 95:288–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Research reported in this publication was supported in part by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number R35GM142594 and the Medical College of Wisconsin Research Affairs Committee. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Thanks to Drs. Karolin Luger, Catherine Musselman, and Michael Poirier for gifts of histone and Widom 601 plasmids.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma A. Morrison .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Paintsil, E.A., Morrison, E.A. (2023). Preparation of Recombinant Histones and Widom 601 DNA for Reconstitution of Nucleosome Core Particles. In: Simoes-Costa, M. (eds) DNA-Protein Interactions. Methods in Molecular Biology, vol 2599. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2847-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2847-8_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2846-1

  • Online ISBN: 978-1-0716-2847-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics