Skip to main content

Visualizing Activated Myofibroblasts Resulting from Differentiation of Mesenchymal Stem Cells

  • Protocol
  • First Online:
Signal Transduction Immunohistochemistry

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2593))

Abstract

Mesenchymal stem cells (MSCs) are multipotent cells that exhibit two main characteristics which define stem cells: self-renewal and differentiation. MSCs can migrate to sites of injury, inflammation, and tumor. Moreover, MSCs undergo myofibroblast-like differentiation, including increased production of α-SMA in response to transforming growth factor-β (TGF-β), a growth factor commonly secreted by tumor cells to evade immune surveillance. Based on our previous findings, hMSCs become activated and resemble carcinoma-associated myofibroblasts upon prolonged exposure to a conditioned medium from MDAMB231 human breast cancer cells. In this section, we show using immunofluorescence that keratinocyte-conditioned medium (KCM) induces differentiation of MSCs to resemble dermal myofibroblast-like cells with punctate vinculin staining and F-actin filaments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Knospe WH, Gregory SA, Husseini SG et al (1972) Origin and recovery of colony-forming units in locally curetted bone marrow of mice. Blood 39(3):331–340

    Article  CAS  Google Scholar 

  2. Friedenstein AJ, Petrakova KV, Kurolesova AI et al (1968) Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6(2):230–247

    Article  CAS  Google Scholar 

  3. Friedenstein AJ, Chailakhjan RK, Lalykina KS (1970) The development of fibroblast colonies in monolayer cultures of Guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 3(4):393–403

    CAS  Google Scholar 

  4. Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276(5309):71–74

    Article  CAS  Google Scholar 

  5. Simmons PJ, Torok-Storb B (1991) Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood 78(1):55–62

    Article  CAS  Google Scholar 

  6. Gronthos S, Zannettino AC, Hay SJ et al (2003) Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J Cell Sci 116(Pt 9):1827–1835

    Article  CAS  Google Scholar 

  7. Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147

    Article  CAS  Google Scholar 

  8. Dennis JE, Carbillet JP, Caplan AI et al (2002) The STRO-1+ marrow cell population is multipotential. Cells Tissues Organs 170(2–3):73–82

    Article  Google Scholar 

  9. Uccelli A, Moretta L, Pistoia V (2008) Mesenchymal stem cells in health and disease. Nat Rev 8(9):726–736

    CAS  Google Scholar 

  10. Arai F, Ohneda O, Miyamoto T et al (2002) Mesenchymal stem cells in perichondrium express activated leukocyte cell adhesion molecule and participate in bone marrow formation. J Exp Med 195(12):1549–1563

    Article  CAS  Google Scholar 

  11. Campagnoli C, Roberts IA, Kumar S et al (2001) Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 98(8):2396–2402

    Article  CAS  Google Scholar 

  12. Young HE, Steele TA, Bray RA et al (2001) Human reserve pluripotent mesenchymal stem cells are present in the connective tissues of skeletal muscle and dermis derived from fetal, adult, and geriatric donors. Anat Rec 264(1):51–62

    Article  CAS  Google Scholar 

  13. Anker PS, Scherjon SA, Kleijburg-van der Keur C et al (2004) Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 22(7):1338–1345

    Article  Google Scholar 

  14. Anker PS, Scherjon SA, Kleijburg-van der Keur C et al (2003) Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 102(4):1548–1549

    Article  Google Scholar 

  15. Erices A, Conget P, Minguell JJ (2000) Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 109(1):235–242

    Article  CAS  Google Scholar 

  16. Bieback K, Kern S, Kluter H et al (2004) Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells 22(4):625–634

    Article  Google Scholar 

  17. Bourin P, Gadelorge M, Peyrafitte JA, Fleury-Cappellesso S, Gomez M, Rage C, Sensebé L (2008) Mesenchymal progenitor cells: tissue origin, isolation and culture. Transfus Med Hemother 35(3):160–167. https://doi.org/10.1159/000124734. Epub 2008 May 8. PMID: 21547114; PMCID: PMC3083284

  18. Kinnaird T, Stabile E, Burnett MS et al (2004) Bone-marrow-derived cells for enhancing collateral development: mechanisms, animal data, and initial clinical experiences. Circ Res 95(4):354–363

    Article  CAS  Google Scholar 

  19. Horwitz EM, Gordon PL, Koo WK et al (2002) Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc Natl Acad Sci U S A 99(13):8932–8937

    Google Scholar 

  20. Bernardo ME, Locatelli F, Fibbe WE (2009) Mesenchymal stromal cells. Ann N Y Acad Sci 1176:101–117

    Article  CAS  Google Scholar 

  21. Anjos-Afonso F, Bonnet D (2007) Nonhematopoietic/endothelial SSEA-1+ cells define the most primitive progenitors in the adult murine bone marrow mesenchymal compartment. Blood 109(3):1298–1306

    Article  CAS  Google Scholar 

  22. Battula VL, Treml S, Bareiss PM et al (2009) Isolation of functionally distinct mesenchymal stem cell subsets using antibodies against CD56, CD271, and mesenchymal stem cell antigen-1. Haematologica 94(2):173–184

    Article  CAS  Google Scholar 

  23. Lv FJ, Tuan RS, Cheung KM et al (2014) Concise review: the surface markers and identity of human mesenchymal stem cells. Stem Cells 32(6):1408–1419. https://doi.org/10.1002/stem.1681. PMID: 24578244

    Article  CAS  Google Scholar 

  24. Shahdadfar A, Fronsdal K, Haug T et al (2005) In vitro expansion of human mesenchymal stem cells: choice of serum is a determinant of cell proliferation, differentiation, gene expression, and transcriptome stability. Stem Cells 23(9):1357–1366

    Article  CAS  Google Scholar 

  25. Gao H, Priebe W, Glod J et al (2009) Activation of signal transducers and activators of transcription 3 and focal adhesion kinase by stromal cell-derived factor 1 is required for migration of human mesenchymal stem cells in response to a tumor cell-conditioned medium. Stem Cells 27(4):857–865

    Article  CAS  Google Scholar 

  26. Menon LG, Picinich S, Koneru R et al (2007) Differential gene expression associated with migration of mesenchymal stem cells to conditioned medium from tumor cells or bone marrow cells. Stem Cells 25(2):520–528

    Article  CAS  Google Scholar 

  27. Mishra PJ, Mishra PJ, Humeniuk R et al (2008) Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res 68(11):4331–4339. https://doi.org/10.1158/0008-5472.CAN-08-0943. PMID: 18519693; PMCID: PMC2725025

    Article  CAS  Google Scholar 

  28. Karnoub AE, Dash AB, Vo AP et al (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449(7162):557–563. https://doi.org/10.1038/nature06188. PMID: 17914389

    Article  CAS  Google Scholar 

  29. Hung SC, Deng WP, Yang WK et al (2005) Mesenchymal stem cell targeting of microscopic tumors and tumor stroma development monitored by noninvasive in vivo positron emission tomography imaging. Clin Cancer Res 11(21):7749–7756

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debabrata Banerjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mishra, P.J., Banerjee, D. (2023). Visualizing Activated Myofibroblasts Resulting from Differentiation of Mesenchymal Stem Cells. In: Kalyuzhny, A.E. (eds) Signal Transduction Immunohistochemistry. Methods in Molecular Biology, vol 2593. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2811-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2811-9_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2810-2

  • Online ISBN: 978-1-0716-2811-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics