Skip to main content

High-Throughput Screening to Identify Modulators of Sarcospan

  • Protocol
  • First Online:
Muscular Dystrophy Therapeutics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2587))

Abstract

High-throughput screening enables the discovery of disease-modifying small molecules. Here, we describe the development of a scalable, cell-based assay to screen for small molecules that modulate sarcospan for the treatment of Duchenne muscular dystrophy. We detail the hit validation pipeline, which includes secondary screening, gene/protein quantification, and an in vitro membrane stability assay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Marshall JL, Crosbie-Watson RH (2013) Sarcospan: a small protein with large potential for Duchenne muscular dystrophy. Skelet Muscle 3(1):1. https://doi.org/10.1186/2044-5040-3-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Crosbie RH, Heighway J, Venzke DP, Lee JC, Campbell KP (1997) Sarcospan, the 25-kDa transmembrane component of the dystrophin-glycoprotein complex. J Biol Chem 272(50):31221–31224. https://doi.org/10.1074/jbc.272.50.31221

    Article  CAS  PubMed  Google Scholar 

  3. Barresi R, Moore SA, Stolle CA, Mendell JR, Campbell KP (2000) Expression of gamma-sarcoglycan in smooth muscle and its interaction with the smooth muscle sarcoglycan-sarcospan complex. J Biol Chem 275(49):38554–38560. https://doi.org/10.1074/jbc.M007799200

    Article  CAS  PubMed  Google Scholar 

  4. Crosbie RH, Lebakken CS, Holt KH, Venzke DP, Straub V, Lee JC, Grady RM, Chamberlain JS, Sanes JR, Campbell KP (1999) Membrane targeting and stabilization of sarcospan is mediated by the sarcoglycan subcomplex. J Cell Biol 145(1):153–165. https://doi.org/10.1083/jcb.145.1.153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Crosbie RH, Lim LE, Moore SA, Hirano M, Hays AP, Maybaum SW, Collin H, Dovico SA, Stolle CA, Fardeau M, Tomé FM, Campbell KP (2000) Molecular and genetic characterization of sarcospan: insights into sarcoglycan-sarcospan interactions. Hum Mol Genet 9(13):2019–2027. https://doi.org/10.1093/hmg/9.13.2019

    Article  CAS  PubMed  Google Scholar 

  6. Parvatiyar MS, Marshall JL, Nguyen RT, Jordan MC, Richardson VA, Roos KP, Crosbie-Watson RH (2015) Sarcospan regulates cardiac isoproterenol response and prevents duchenne muscular dystrophy-associated cardiomyopathy. J Am Heart Assoc 4(12):e002481. https://doi.org/10.1161/JAHA.115.002481

    Article  PubMed  PubMed Central  Google Scholar 

  7. Parvatiyar MS, Brownstein AJ, Kanashiro-Takeuchi RM, Collado JR, Dieseldorff Jones KM, Gopal J, Hammond KG, Marshall JL, Ferrel A, Beedle AM, Chamberlain JS, Renato Pinto J, Crosbie RH (2019) Stabilization of the cardiac sarcolemma by sarcospan rescues DMD-associated cardiomyopathy. JCI Insight 5(11):e123855. https://doi.org/10.1172/jci.insight.123855

    Article  PubMed  Google Scholar 

  8. Gibbs EM, Marshall JL, Ma E, Nguyen TM, Hong G, Lam JS, Spencer MJ, Crosbie-Watson RH (2016) High levels of sarcospan are well tolerated and act as a sarcolemmal stabilizer to address skeletal muscle and pulmonary dysfunction in DMD. Hum Mol Genet 25(24):5395–5406. https://doi.org/10.1093/hmg/ddw356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lovering RM, Porter NC, Bloch RG (2005) The muscular dystrophies: from genes to therapies. Phys Ther 85(12):1372–1388

    Article  PubMed  Google Scholar 

  10. Petrof BJ, Shrager JB, Stedman HH, Kelly AM, Sweeney HL (1993) Dystrophin protects the sarcolemma from stresses developed during muscle contraction. Proc Natl Acad Sci U S A 90(8):3710–3714. https://doi.org/10.1073/pnas.90.8.3710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ervasti JM, Campbell KP (1993) A role for the dystrophin-glycoprotein complex as a transmembrane linker between laminin and actin. J Cell Biol 122(4):809–823. https://doi.org/10.1083/jcb.122.4.809

    Article  CAS  PubMed  Google Scholar 

  12. Ervasti JM, Campbell KP (1991) Membrane organization of the dystrophin-glycoprotein complex. Cell 66(6):1121–1131. https://doi.org/10.1016/0092-8674(91)90035-W

    Article  CAS  PubMed  Google Scholar 

  13. Ervasti JM, Kahl SD, Campbell KP (1991) Purification of dystrophin from skeletal muscle. J Biol Chem 266(14):9161–9165. https://doi.org/10.1016/S0021-9258(18)31565-5

    Article  CAS  PubMed  Google Scholar 

  14. Matsumura K, Ervasti JM, Ohlendieck K, Kahl SD, Campbell KP (1992) Association of dystrophin-related protein with dystrophin-associated proteins in mdx mouse muscle. Nature 360(6404):588–591. https://doi.org/10.1038/360588a0

    Article  CAS  PubMed  Google Scholar 

  15. Ervasti JM, Ohlendieck K, Kahl SD, Gaver MG, Campbell KP (1990) Deficiency of a glycoprotein component of the dystrophin complex in dystrophic muscle. Nature 345(6273):315–319. https://doi.org/10.1038/345315a0

    Article  CAS  PubMed  Google Scholar 

  16. Ibraghimov-Beskrovnaya O, Ervasti JM, Leveille CJ, Slaughter CA, Sernett SW, Campbell KP (1992) Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix. Nature 355(6362):6696–6702. https://doi.org/10.1038/355696a0

    Article  Google Scholar 

  17. Koeks Z, Bladen CL, Salgado D, van Zwet E, Pogoryelova O, McMacken G, Monges S, Foncuberta ME, Kekou K, Kosma K, Dawkins H, Lamont L, Bellgard MI, Roy AJ, Chamova T, Guergueltcheva V, Chan S, Korngut L, Campbell C, Dai Y, Wang J, Barišić N, Brabec P, Lähdetie J, Walter MC, Schreiber-Katz O, Karcagi V, Garami M, Herczegfalvi A, Viswanathan V, Bayat F, Buccella F, Ferlini A, Kimura E, van den Bergen JC, Rodrigues M, Roxburgh R, Lusakowska A, Kostera-Pruszczyk A, Santos R, Neagu E, Artemieva S, Rasic VM, Vojinovic D, Posada M, Bloetzer C, Klein A, Díaz-Manera J, Gallardo E, Karaduman AA, Oznur T, Topaloğlu H, El Sherif R, Stringer A, Shatillo AV, Martin AS, Peay HL, Kirschner J, Flanigan KM, Straub V, Bushby K, Béroud C, Verschuuren JJ, Lochmüller H (2017) Clinical outcomes in duchenne muscular dystrophy: a study of 5345 patients from the TREAT-NMD DMD global database. J Neuromuscul Dis 4(4):293–306. https://doi.org/10.3233/JND-170280

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ryder S, Leadley RM, Armstrong N, Westwood M, de Kock S, Butt T, Jain M, Kleijnen J (2017) The burden, epidemiology, costs and treatment for Duchenne muscular dystrophy: an evidence review. Orphanet J Rare Dis 12(1):79. https://doi.org/10.1186/s13023-017-0631-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nigro G, Comi LI, Politano L, Bain RJ (1990) The incidence and evolution of cardiomyopathy in Duchenne muscular dystrophy. Int J Cardiol 26(3):271–277. https://doi.org/10.1016/0167-5273(90)90082-g

    Article  CAS  PubMed  Google Scholar 

  20. Schnell F, Donoghue C, Dworzak J, Charleston J, Frank D, Wilton S (2017) Development of a validated Western blot method for quantification of human dystrophin protein used in Phase 700 II and III clinical trials of eteplirsen for the treatment of Duchenne muscular dystrophy (DMD). Neurology 88(16 Supplement):5.105

    Google Scholar 

  21. Moxley RT 3rd, Pandya S, Ciafaloni E, Fox DJ, Campbell K (2010) Change in natural history of Duchenne muscular dystrophy with long-term corticosteroid treatment: implications for management. J Child Neurol 9:1116–1129. https://doi.org/10.1177/0883073810371004

    Article  Google Scholar 

  22. Marshall JL, Holmberg J, Chou E, Ocampo AC, Oh J, Lee J, Peter AK, Martin PT, Crosbie-Watson RH (2012) Sarcospan-dependent Akt activation is required for utrophin expression and muscle regeneration. J Cell Biol 197(7):1009–1027. https://doi.org/10.1083/jcb.201110032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mamsa H, Stark RL, Shin KM, Beedle AM, Crosbie RH (2022) Sarcospan increases laminin-binding capacity of α-dystroglycan to ameliorate DMD independent of Galgt2. Hum Mol Genet. 31(5):718–732. https://doi.org/10.1093/hmg/ddab276

    Article  CAS  PubMed  Google Scholar 

  24. Peter AK, Marshall JL, Crosbie RH (2008) Sarcospan reduces dystrophic pathology: stabilization of the utrophin-glycoprotein complex. J Cell Biol 183(3):419–427. https://doi.org/10.1083/jcb.200808027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Marshall JL, Chou E, Oh J, Kwok A, Burkin DJ, Crosbie-Watson RH (2012) Dystrophin and utrophin expression require sarcospan: loss of α7 integrin exacerbates a newly discovered muscle phenotype in sarcospan-null mice. Hum Mol Genet 21(20):4378–4393. https://doi.org/10.1093/hmg/dds271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shu C, Parfenova L, Mokhonova E, Collado JR, Damoiseaux R, Campagna J, John V, Crosbie RH (2020) High-throughput screening identifies modulators of sarcospan that stabilize muscle cells and exhibit activity in the mouse model of Duchenne muscular dystrophy. Skelet Muscle 10(1):26. https://doi.org/10.1186/s13395-020-00244-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shu C, Kaxon-Rupp AN, Collado JR, Damoiseaux R, Crosbie RH (2019) Development of a high-throughput screen to identify small molecule enhancers of sarcospan for the treatment of Duchenne muscular dystrophy. Skelet Muscle 9(1):32. https://doi.org/10.1186/s13395-019-0218-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang XD (2011) Illustration of SSMD, z score, SSMD*, z* score, and t statistic for hit selection in RNAi high-throughput screens. J Biomol Screen 16(7):775–785. https://doi.org/10.1177/1087057111405851

    Article  PubMed  Google Scholar 

  29. Morgan JE, Beauchamp JR, Pagel CN, Peckham M, Ataliotis P, Jat PS, Noble MD, Farmer K, Partridge TA (1994) Myogenic cell lines derived from transgenic mice carrying a thermolabile T antigen: a model system for the derivation of tissue-specific and mutation-specific cell lines. Dev Biol 162(2):486–498. https://doi.org/10.1006/dbio.1994.1103

    Article  CAS  PubMed  Google Scholar 

  30. Mamchaoui K, Trollet C, Bigot A, Negroni E, Chaouch S, Wolff A, Kandalla PK, Marie S, Di Santo J, St Guily JL, Muntoni F, Kim J, Philippi S, Spuler S, Levy N, Blumen SC, Voit T, Wright WE, Aamiri A, Butler-Browne G, Mouly V (2011) Immortalized pathological human myoblasts: towards a universal tool for the study of neuromuscular disorders. Skelet Muscle 1(1):34. https://doi.org/10.1186/2044-5040-1-34

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Muscle Cell Biology, Pathogenesis, and Therapeutics Training Grant (NIH T32 AR065972); Pilot and Feasibility Seed Grant program (NIH/NIAMS P30 AR057230); UCLA Department of Integrative Biology & Physiology Eureka Scholarship; Muscular Dystrophy Association (MDA 274143; Venture Philanthropy Program); NIH NIAMS (R01 AR048179); and NIH NHLBI (R01 HL126204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachelle H. Crosbie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Shu, C., Mokhonova, E., Crosbie, R.H. (2023). High-Throughput Screening to Identify Modulators of Sarcospan. In: Maruyama, R., Yokota, T. (eds) Muscular Dystrophy Therapeutics. Methods in Molecular Biology, vol 2587. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2772-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2772-3_25

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2771-6

  • Online ISBN: 978-1-0716-2772-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics