Skip to main content

The Trypanosomatids Cell Cycle: A Brief Report

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2579))

Abstract

Trypanosomatids are protozoan parasites among which are the etiologic agents of various infectious diseases in humans, such as Trypanosoma cruzi (causative agent of Chagas disease), Trypanosoma brucei (causative agent of sleeping sickness), and species of the genus Leishmania (causative agents of leishmaniases). The cell cycle in these organisms presents a sequence of events conserved throughout evolution. However, these parasites also have unique characteristics that confer some peculiarities related to the cell cycle phases. This review compares general and peculiar aspects of the cell cycle in the replicative forms of trypanosomatids. Moreover, a brief discussion about the possible cross-talk between telomeres and the cell cycle is presented. Finally, we intend to open a discussion on how a profound understanding of the cell cycle would facilitate the search for potential targets for developing antiparasitic therapies that could help millions of people worldwide.

Arthur de Oliveira Passos, Luiz H. C. Assis, Yete G. Ferri and Vitor L. da Silva have contributed equally to this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Burza S, Croft SL, Boelaert M (2018) Leishmaniasis. Lancet 392(10151):951–970

    Article  PubMed  Google Scholar 

  2. Browne AJ, Guerra CA, Alves RV et al (2017) The contemporary distribution of Trypanosoma cruzi infection in humans, alternative hosts and vectors. Sci Data 4:170050

    Article  PubMed  PubMed Central  Google Scholar 

  3. Franco JR, Simarro PP, Diarra A et al (2014) Epidemiology of human African trypanosomiasis. Clin Epidemiol 6:257–275

    PubMed  PubMed Central  Google Scholar 

  4. da Silva MS, Cano MIN (2017) Molecular and cellular biology of pathogenic Trypanosomatids. Bentham Science Publishers, Saif Zone Sharjah, United Arab Emirates

    Google Scholar 

  5. Wheeler RJ, Gluenz E, Gull K (2013) The limits on trypanosomatid morphological diversity. PLoS One 8(11):e79581

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Abuchery BE, Black JA, da Silva MS (2022) Single-cell transcriptomics reveals hidden information in trypanosomatids. Trends Parasitol 38(1):4–6

    Article  CAS  PubMed  Google Scholar 

  7. Naula C, Parsons M, Mottram JC (2005) Protein kinases as drug targets in trypanosomes and Leishmania. Biochim Biophys Acta. 1754(1–2):151–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hammarton TC (2007) Cell cycle regulation in Trypanosoma brucei. Mol Biochem Parasitol 153:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wheeler RJ, Gull K, Sunter JD (2019) Coordination of the cell cycle in trypanosomes. Annu Rev Microbiol 73:133–154

    Article  CAS  PubMed  Google Scholar 

  10. de Castro Neto AL, da Silveira JF, Mortara RA (2021) Comparative analysis of virulence mechanisms of Trypanosomatids pathogenic to humans. Front Cell Infect Microbiol 11:669079

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Efstathiou A, Smirlis D (2021) Leishmania protein kinases: important regulators of the parasite life cycle and molecular targets for treating leishmaniasis. Microorganisms 9(4):691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Matthews HK, Bertoli C, de Bruin RAM (2022) Cell cycle control in cancer. Nat Rev Mol Cell Biol 23(1):74–88

    Article  CAS  PubMed  Google Scholar 

  13. da Silva MS, Vitarelli MO, Souza BF et al (2020) Comparative analysis of the minimum number of replication origins in Trypanosomatids and yeasts. Genes 11:523

    Article  PubMed Central  CAS  Google Scholar 

  14. Cooper S (2021) The anti-G0 manifesto: should a problematic construct (G0) with no biological reality be removed from the cell cycle? Yes! BioEssays 43(3):e2000270

    Article  PubMed  Google Scholar 

  15. Tomura M, Sakaue-Sawano A, Mori Y et al (2013) Contrasting quiescent G0 phase with mitotic cell cycling in the mouse immune system. PLoS One 8(9):e73801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gossage SM, Rogers ME, Bates PA (2003) Two separate growth phases during the development of Leishmania in sand flies: implications for understanding the life cycle. Int J Parasitol 33(10):1027–1034

    Article  PubMed  PubMed Central  Google Scholar 

  17. Rittershaus ESC, Baek SH, Sassetti CM (2013) The normalcy of dormancy: common themes in microbial quiescence. Cell Host Microbe 13(6):643–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Avila CC, Mule SN, Rosa-Fernandes L et al (2018) Proteome-wide analysis of Trypanosoma cruzi exponential and stationary growth phases reveals a subcellular compartment-specific regulation. Genes (Basel) 9(8):413

    Article  CAS  Google Scholar 

  19. Briggs EM, Rojas F, McCulloch R et al (2021) Single-cell transcriptomic analysis of bloodstream Trypanosoma brucei reconstructs cell cycle progression and developmental quorum sensing. Nat Commun 121(12):1–15

    Google Scholar 

  20. da Silva MS, Muñoz PAM, Armelin HA et al (2017) Differences in the detection of BrdU/EdU incorporation assays Alter the calculation for G1, S, and G2 phases of the cell cycle in Trypanosomatids. J Eukaryot Microbiol 64:756–770

    Article  PubMed  CAS  Google Scholar 

  21. Archer SK, Inchaustegui D, Queiroz R et al (2011) The cell cycle regulated transcriptome of Trypanosoma brucei. PLoS One 6(3):e18425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. da Silva MS, Cayres-Silva GR, Vitarelli MO et al (2019) Transcription activity contributes to the firing of non-constitutive origins in African trypanosomes helping to maintain robustness in S-phase duration. Sci Rep 9:18512

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. da Silva MS, Pavani RS, Damasceno JD et al (2017) Nuclear DNA replication in Trypanosomatids: there are no easy methods for solving difficult problems. Trends Parasitol 33(11):858–874

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. da Silva M (2020) Estimation of the minimum number of replication origins per chromosome in any organism. Bio Protoc 10(20):e3798

    Article  PubMed  PubMed Central  Google Scholar 

  25. Marques CA, Dickens NJ, Paape D et al (2015) Genome-wide mapping reveals single-origin chromosome replication in Leishmania, a eukaryotic microbe. Genome Biol 16:230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Tiengwe C, Marcello L, Farr H et al (2012) Genome-wide analysis reveals extensive functional interaction between DNA replication initiation and transcription in the genome of Trypanosoma brucei. Cell Rep 2:185–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Damasceno JD, Marques CA, Beraldi D et al (2020) Genome duplication in Leishmania major relies on persistent subtelomeric dna replication. elife 9:e58030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ishikawa F (2013) Portrait of replication stress viewed from telomeres. Cancer Sci 104(7):790–794

    Article  CAS  PubMed  Google Scholar 

  29. Feng X, Hsu SJ, Kasbek C et al (2017) CTC1-mediated C-strand fill-in is an essential step in telomere length maintenance. Nucleic Acids Res 45(8):4281–4293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. da Silva MS, Monteiro JP, Nunes VS et al (2013) Leishmania amazonensis promastigotes present two distinct modes of nucleus and Kinetoplast segregation during cell cycle. PLoS One 8:e81397

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Jones NG, Thomas EB, Brown E et al (2014) Regulators of Trypanosoma brucei cell cycle progression and differentiation identified using a Kinome-wide RNAi screen. PLoS Pathog 10(1):e1003886

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Woodward R, Gull K (1990) Timing of nuclear and kinetoplast DNA replication and early morphological events in the cell cycle of Trypanosoma brucei. J Cell Sci 95:49–57

    Article  PubMed  Google Scholar 

  33. Wheeler RJ, Gluenz E, Gull K (2011) The cell cycle of Leishmania: morphogenetic events and their implications for parasite biology. Mol Microbiol 79:647–662

    Article  CAS  PubMed  Google Scholar 

  34. Harashima H, Dissmeyer N, Schnittger A (2013) Cell cycle control across the eukaryotic kingdom. Trends Cell Biol 23(7):345–356

    Article  CAS  PubMed  Google Scholar 

  35. Hu H, Liu Y, Zhou Q et al (2015) The centriole cartwheel protein SAS-6 in Trypanosoma brucei is required for probasal body biogenesis and flagellum assembly. Eukaryot Cell 14:898–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wheeler RJ, Sunter JD, Gull K (2016) Flagellar pocket restructuring through the Leishmania life cycle involves a discrete flagellum attachment zone. J Cell Sci 129(4):854–867

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lodish H, Berk A, Zipursky S et al (2000) Overview of the cell cycle and its control. In: Molecular cell biology, section 13.1, Garland Science, New York, U.S.A

    Google Scholar 

  38. Campbell PC, De Graffenried CL (2020) Alternate histories of cytokinesis: lessons from the trypanosomatids. Mol Biol Cell 31(24):2631–2639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hecker H, Gander ES (1985) The compaction pattern of the chromatin of trypanosomes. Biol Cell 53:199–208

    Article  CAS  PubMed  Google Scholar 

  40. Hecker H, Betschart B, Bender K et al (1994) The chromatin of trypanosomes. Int J Parasitol 24(6):809–819

    Article  CAS  PubMed  Google Scholar 

  41. Blackburn EH (2005) Telomeres and telomerase: their mechanisms of action and the effects of altering their functions. FEBS Lett 579(4):859–862

    Article  CAS  PubMed  Google Scholar 

  42. Harley CB, Futcher AB, Greider CW (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345(6274):458–460

    Article  CAS  PubMed  Google Scholar 

  43. Greider CW, Blackburn EH (1987) The telomere terminal transferase of tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell 51(6):887–898

    Article  CAS  PubMed  Google Scholar 

  44. Giardini MA, Segatto M, da Silva MS et al (2014) Telomere and telomerase biology. In: Progress in molecular biology and translational science, pp 1-40, Elsevier, Amsterdam, The Netherlands

    Google Scholar 

  45. Zhao YM, Li JY, Lan JP et al (2008) Cell cycle dependent telomere regulation by telomerase in human bone marrow mesenchymal stem cells. Biochem Biophys Res Commun 369(4):1114–1119

    Article  CAS  PubMed  Google Scholar 

  46. Holt SE, Aisner DL, Shay JW et al (1997) Lack of cell cycle regulation of telomerase activity in human cells. Proc Natl Acad Sci U S A 94(20):10687–10692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. de Oliveira BCD, Shiburah ME, Paiva SC et al (2021) Possible involvement of Hsp90 in the regulation of telomere length and telomerase activity during the Leishmania amazonensis developmental cycle and population proliferation. Front Cell Dev Biol 9:713415

    Article  PubMed  PubMed Central  Google Scholar 

  48. Muoz-Jordán JL, Cross GAM (2001) Telomere shortening and cell cycle arrest in Trypanosoma brucei expressing human telomeric repeat factor TRF1. Mol Biochem Parasitol 114(2):169–181

    Article  Google Scholar 

  49. Li B, Espinal A, Cross GAM (2005) Trypanosome telomeres are protected by a homologue of mammalian TRF2. Mol Cell Biol 25(12):5011–5021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. da Silva MS, Segatto M, Pavani RS et al (2017) Consequences of acute oxidative stress in Leishmania amazonensis: from telomere shortening to the selection of the fittest parasites. Biochim Biophys Acta, Mol Cell Res 1864:138–150

    Article  CAS  Google Scholar 

  51. da Silva MS, Perez AM, de Cássia V da Silveira R et al (2010) The Leishmania amazonensis TRF (TTAGGG repeat binding factor) homologue binds and co-localizes with telomeres. BMC Microbiol 10:136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Serafim TD, Coutinho-Abreu IV, Oliveira F et al (2018) Sequential blood meals promote Leishmania replication and reverse metacyclogenesis augmenting vector infectivity. Nat Microbiol 3(5):548–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Timson J (1975) Hydroxyurea. Mutat Res 32(2):115–132

    Article  CAS  PubMed  Google Scholar 

  54. Ligasová A, Koberna K (2021) Strengths and weaknesses of cell synchronization protocols based on inhibition of dna synthesis. Int J Mol Sci 22(19):10759

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Musiałek MW, Rybaczek D (2021) Hydroxyurea—the good, the bad and the ugly. Genes (Basel) 12(7):1096

    Article  CAS  Google Scholar 

  56. Singh A, Xu YJ (2016) The cell killing mechanisms of hydroxyurea. Genes (Basel) 7(11):99

    Article  CAS  Google Scholar 

  57. Abuchery BE, Black JA, da Silva MS (2021) Single-cell transcriptomics reveals hidden information in trypanosomatids. Trends Parasitol 38(1):4–6

    Article  PubMed  CAS  Google Scholar 

  58. Shlomai J (2005) The structure and replication of Kinetoplast DNA. Curr Mol Med 4(6):623–647

    Article  Google Scholar 

  59. Liu B, Liu Y, Motyka SA et al (2005) Fellowship of the rings: the replication of kinetoplast DNA. Trends Parasitol 21(8):363–369

    Article  CAS  PubMed  Google Scholar 

  60. Ambit A, Woods KL, Cull B et al (2011) Morphological events during the cell cycle of leishmania major. Eukaryot Cell 10:1429–1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Simpson L, Braly P (1970) Synchronization of Leishmania tarentolae by hydroxyurea. J Protozool 17(4):511–517

    Article  CAS  PubMed  Google Scholar 

  62. Minocha N, Kumar D, Rajanala K et al (2011) Kinetoplast morphology and segregation pattern as a marker for cell cycle progression in Leishmania donovani. J Eukaryot Microbiol 58(3):249–253

    Article  PubMed  Google Scholar 

  63. Valdivia HO, Reis-Cunha JL, Rodrigues-Luiz GF et al (2015) Comparative genomic analysis of Leishmania (Viannia) peruviana and Leishmania (Viannia) braziliensis. BMC Genomics 16(1):715

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Débora Andrade-Silva (São Paulo State University, Brazil) for her critical revision and valuable suggestions to improve the manuscript’s writing.

This work was supported by São Paulo Research Foundation (FAPESP) under grants: 2018/04375-2 (MINC), and 2019/10753-2 and 2020/10277-3 (to MSdS). LHCA is a postdoctoral fellow from FAPESP (grant 2021/04253-7). AdOP, VLdS, and YGF are M.Sc. fellows from FAPESP (grants 2021/05861-0, 2020/16481-1, and 2020/16465-6, respectively).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marcelo S. da Silva or Maria Isabel N. Cano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Passos, A.d.O., Assis, L.H.C., Ferri, Y.G., da Silva, V.L., da Silva, M.S., Cano, M.I.N. (2022). The Trypanosomatids Cell Cycle: A Brief Report. In: Wang, Z. (eds) Cell-Cycle Synchronization. Methods in Molecular Biology, vol 2579. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2736-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2736-5_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2735-8

  • Online ISBN: 978-1-0716-2736-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics