Skip to main content

Synchronization of Saccharomyces cerevisiae Cells for Analysis of Progression Through the Cell Cycle

  • Protocol
  • First Online:
Cell-Cycle Synchronization

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2579))

  • 2096 Accesses

Abstract

The cell division cycle is a fundamental process required for proliferation of all living organisms. The eukaryotic cell cycle follows a basic template with an ordered series of events beginning with G1 (Gap1) phase, followed successively by S (Synthesis) phase, G2 (Gap 2) phase, and M-phase (Mitosis). The process is tightly regulated in response to signals from both the internal and external milieu. The budding yeast S. cerevisiae is an outstanding model for the study of the cell cycle and its regulatory process. The basic events and regulatory processes of the S. cerevisiae cell cycle are highly conserved with other eukaryotes. The organism grows rapidly in simple medium, has a sequenced annotated genome, well-established genetics, and is amenable to analysis by proteomics and microscopy. Additionally, a range of tools and techniques are available to generate cultures of S. cerevisiae that are homogenously arrested or captured at specific phases of the cell cycle and upon release from that arrest these can be used to monitor cell cycle events as the cells synchronously proceed through a division cycle. In this chapter, we describe a series of commonly used techniques that are used to generate synchronized populations of S. cerevisiae and provide an overview of methods that can be used to monitor the progression of the cells through the cell division cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morgan DO (2007) The cell cycle:principles of control. New Science Press Ltd, London

    Google Scholar 

  2. Hartwell LH, Weinert TA (1989) Checkpoints: controls that ensure the order of cell cycle events. Science 246:629–634

    Article  CAS  PubMed  Google Scholar 

  3. Hartwell LH (1974) Saccharomyces cerevisiae cell cycle. Bacteriol Rev 38:164–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Newport JW, Kirschner MW (1984) Regulation of the cell cycle during early Xenopus development. Cell 37:731–742

    Article  CAS  PubMed  Google Scholar 

  5. O’Farrell PH, Edgar BA, Lakich D, Lehner CF (1989) Directing cell division during development. Science 246:635–640

    Article  PubMed  Google Scholar 

  6. Kipreos ET, van den Heuvel S (2019) Developmental control of the cell cycle: insights from Caenorhabditis elegans. Genetics 211:797–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pérez-Hidalgo L, Moreno S, Martín-Castellanos C (2008) Modified cell cycle regulation in meiosis. In: Egel R, Lankenau D-H (eds) Recombination and meiosis: crossing-over and disjunction. Springer, Berlin, Heidelberg

    Google Scholar 

  8. Botstein D, Fink GR (1988) Yeast: an experimental organism for modern biology. Science 240:1439–1443

    Article  CAS  PubMed  Google Scholar 

  9. Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H et al (1996) Life with 6000 genes. Science 274(546):563–567

    Google Scholar 

  10. Knop M, Siegers K, Pereira G, Zachariae W, Winsor B, Nasmyth K, Schiebel E (1999) Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines. Yeast 15:963–972

    Article  CAS  PubMed  Google Scholar 

  11. Hartwell LH, Unger MW (1977) Unequal division in Saccharomyces cerevisiae and its implications for the control of cell division. J Cell Biol 75:422–435

    Article  CAS  PubMed  Google Scholar 

  12. Amon A (1996) Mother and daughter are doing fine: asymmetric cell division in yeast. Cell 84:651–654

    Article  CAS  PubMed  Google Scholar 

  13. Schneider BL, Zhang J, Markwardt J, Tokiwa G, Volpe T, Honey S, Futcher B (2004) Growth rate and cell size modulate the synthesis of, and requirement for, G1-phase cyclins at start. Mol Cell Biol 24:10802–10813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lew DJ, Reed SI (1995) Cell cycle control of morphogenesis in budding yeast. Curr Opin Genet Dev 5:17–23

    Article  CAS  PubMed  Google Scholar 

  15. Hartwell LH, Mortimer RK, Culotti J, Culotti M (1973) Genetic control of the cell division cycle in yeast: V. Genetic analysis of cdc mutants. Genetics 74:267–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Futcher B (1999) Cell cycle synchronization. Methods Cell Sci 21:79–86

    Article  CAS  PubMed  Google Scholar 

  17. Sherman F (1991) Getting started with yeast. Methods Enzymol 194:3–21

    Article  CAS  PubMed  Google Scholar 

  18. Tkacz JS, MacKay VL (1979) Sexual conjugation in yeast. Cell surface changes in response to the action of mating hormones. J Cell Biol 80:326–233

    Article  CAS  PubMed  Google Scholar 

  19. Wang PJ, Chabes A, Casagrande R, Tian XC, Thelander L, Huffaker TC (1997) Rnr4p, a novel ribonucleotide reductase small-subunit protein. Mol Cell Biol 17:6114–6121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Elledge SJ, Davis RW (1990) Two genes differentially regulated in the cell cycle and by DNA-damaging agents encode alternative regulatory subunits of ribonucleotide reductase. Genes Dev 4:740–751

    Article  CAS  PubMed  Google Scholar 

  21. Kunkel W (1980) Effects of the antimicrotubular cancerostatic drug nocodazole on the yeast Saccharomyces cerevisiae. Z Allg Mikrobiol 20:315–324

    Article  CAS  PubMed  Google Scholar 

  22. Richardson HE, Wittenberg C, Cross F, Reed SI (1989) An essential G1 function for cyclin-like proteins in yeast. Cell 59:1127–1133

    Article  CAS  PubMed  Google Scholar 

  23. Dirick L, Nasmyth K (1991) Positive feedback in the activation of G1 cyclins in yeast. Nature 351:754–757

    Article  CAS  PubMed  Google Scholar 

  24. Stuart D, Wittenberg C (1995) CLN3, not positive feedback, determines the timing of CLN2 transcription in cycling cells. Genes Dev 9:2780–2794

    Article  CAS  PubMed  Google Scholar 

  25. Tyers M, Tokiwa G, Futcher B (1993) Comparison of the Saccharomyces cerevisiae G1 cyclins: Cln3 may be an upstream activator of Cln1, Cln2 and other cyclins. EMBO J 12:1955–1968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cross FR, Blake CM (1993) The yeast Cln3 protein is an unstable activator of Cdc28. Mol Cell Biol 13:3266–3271

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Morgan DO (1999) Regulation of the APC and the exit from mitosis. Nat Cell Biol 1:E47–E53

    Article  CAS  PubMed  Google Scholar 

  28. Shirayama M, Tóth A, Gálová M, Nasmyth K (1999) APCCdc20 promotes exit from mitosis by destroying the anaphase inhibitor Pds1 and cyclin Clb5. Nature 402:203–207

    Article  CAS  PubMed  Google Scholar 

  29. Yeong FM, Lim HH, Padmashree CG, Surana U (2000) Exit from mitosis in budding yeast: biphasic inactivation of the Cdc28-Clb2 mitotic kinase and the role of Cdc20. Mol Cell 5:501–511

    Article  CAS  PubMed  Google Scholar 

  30. Robbins JA, Cross FR (2010) Regulated degradation of the APC coactivator Cdc20. Cell Div 5:23. https://doi.org/10.1186/1747-1028-5-23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Prinz S, Hwang ES, Visintin R, Amon A (1998) The regulation of Cdc20 proteolysis reveals a role for the APC components Cdc23 and Cdc27 during S phase and early mitosis. Curr Biol 8:750–760

    Article  CAS  PubMed  Google Scholar 

  32. Keuenhof KS, Larsson Berglund L, Malmgren Hill S, Schneider KL, Widlund PO, Nystrom T, Hoog JL (2022) Large organellar changes occur during mild heat shock in yeast. J Cell Sci 135. https://doi.org/10.1242/jcs.258325

  33. Verghese J, Abrams J, Wang Y, Morano KA (2012) Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system. Microbiol Mol Biol Rev 76:115–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jorgensen P, Rupes I, Sharom JR, Schneper L, Broach JR, Tyers M (2004) A dynamic transcriptional network communicates growth potential to ribosome synthesis and critical cell size. Genes Dev 18:2491–2505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hartwell LH, Culotti J, Reid B (1970) Genetic control of the cell-division cycle in yeast. I detection of mutants. Proc Natl Acad Sci U S A 66:352–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Howell AS, Lew DJ (2012) Morphogenesis and the cell cycle. Genetics 190:51–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lindahl PE (1948) Principle of a counter-streaming centrifuge for the separation of particles of different sizes. Nature 161:648

    Article  CAS  PubMed  Google Scholar 

  38. Bauer J (1999) Advances in cell separation: recent developments in counterflow centrifugal elutriation and continuous flow cell separation. J Chromatogr B Biomed Sci Appl 722:55–69

    Article  CAS  PubMed  Google Scholar 

  39. Stuart D, Wittenberg C (1998) CLB5 and CLB6 are required for premeiotic DNA replication and activation of the meiotic S/M checkpoint. Genes Dev 12:2698–2710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rosebrock AP (2017) Synchronization and arrest of the budding yeast cell cycle using chemical and genetic methods. Cold Spring Harb Protoc 2017. https://doi.org/10.1101/pdb.prot088724

  41. MacKay VL, Welch SK, Insley MY, Manney TR, Holly J, Saari GC, Parker ML (1988) The Saccharomyces cerevisiae BAR1 gene encodes an exported protein with homology to pepsin. Proc Natl Acad Sci U S A 85:55–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Unk I, Daraba A (2014) Synchronization of Saccharomyces cerevisiae cells in G1 phase of the cell cycle. Bio-protocol 4:e1273

    PubMed  Google Scholar 

  43. Endo K, Mizuguchi M, Harata A, Itoh G, Tanaka K (2010) Nocodazole induces mitotic cell death with apoptotic-like features in Saccharomyces cerevisiae. FEBS Lett 584:2387–2392

    Article  CAS  PubMed  Google Scholar 

  44. Cherest H, Kerjan P, Surdin-Kerjan Y (1987) The Saccharomyces cerevisiae MET3 gene: nucleotide sequence and relationship of the 5′ non-coding region to that of MET25. Mol Gen Genet MGG 210:307–313

    Article  CAS  PubMed  Google Scholar 

  45. Lohr D, Venkov P, Zlatanova J (1995) Transcriptional regulation in the yeast GAL gene family: a complex genetic network. FASEB J 9:777–787

    Article  CAS  PubMed  Google Scholar 

  46. Gancedo JM (1998) Yeast carbon catabolite repression. Microbiol Mol Biol Rev 62:334–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Piggott JR, Rai R, Carter BL (1982) A bifunctional gene product involved in two phases of the yeast cell cycle. Nature 298:391–393

    Article  CAS  PubMed  Google Scholar 

  48. Flick K, Chapman-Shimshoni D, Stuart D, Guaderrama M, Wittenberg C (1998) Regulation of cell size by glucose is exerted via repression of the CLN1 promoter. Mol Cell Biol 18:2492–2501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by research grant RGPIN-2021-02898 from the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David T. Stuart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Greenwood, B.L., Stuart, D.T. (2022). Synchronization of Saccharomyces cerevisiae Cells for Analysis of Progression Through the Cell Cycle. In: Wang, Z. (eds) Cell-Cycle Synchronization. Methods in Molecular Biology, vol 2579. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2736-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2736-5_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2735-8

  • Online ISBN: 978-1-0716-2736-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics