Skip to main content

Diaminobenzidine Photooxidation to Visualize Fluorescent Nanoparticles in Adhering Cultured Cells at Transmission Electron Microscopy

  • Protocol
  • First Online:
Histochemistry of Single Molecules

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2566))

Abstract

Visualizing nanoparticles made of organic material (e.g., polysaccharides, proteins, non-osmiophilic lipids) inside cells and tissues at transmission electron microscopy is a difficult task due to the intrinsic weak electron density of these nanoconstructs, which makes them hardly distinguishable in the biological environment. We describe here a simple protocol to apply photooxidation to fluorescently labeled nanoparticles administered to cultured cells in vitro. The conversion of the fluorescent signal into a granular electron-dense reaction product through light irradiation in the presence of diaminobenzidine makes the nanoparticles clearly visible at the ultrastructural level. Our procedure proved to be reliable with various fluorophores and may be applied to any cell type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jhaveri A, Torchilin V (2016) Intracellular delivery of nanocarriers and targeting to subcellular organelles. Expert Opin Drug Deliv 13:49–70. https://doi.org/10.1517/17425247.2015.1086745

    Article  CAS  PubMed  Google Scholar 

  2. Tammam SN, Azzazy HME, Lamprecht A (2016) How successful is nuclear targeting by nanocarriers? J Control Release 229:140–153. https://doi.org/10.1016/j.jconrel.2016.03.022

    Article  CAS  PubMed  Google Scholar 

  3. Zhang YN, Poon W, Tavares AJ, McGilvray ID, Chan WCW (2016) Nanoparticle-liver interactions: cellular uptake and hepatobiliary elimination. J Control Release 240:332–348. https://doi.org/10.1016/j.jconrel.2016.01.020

    Article  CAS  PubMed  Google Scholar 

  4. Battistella C, Klok HA (2017) Controlling and monitoring intracellular delivery of anticancer polymer nanomedicines. Macromol Biosci 17. https://doi.org/10.1002/mabi.201700022

  5. Donahue ND, Acar H, Wilhelm S (2019) Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv Drug Deliv Rev 143:68–96. https://doi.org/10.1016/j.addr.2019.04.008

    Article  CAS  PubMed  Google Scholar 

  6. de Maar JS, Sofias AM, Porta Siegel T, Vreeken RJ, Moonen C, Bos C et al (2020) Spatial heterogeneity of nanomedicine investigated by multiscale imaging of the drug, the nanoparticle and the tumour environment. Theranostics 10:1884–1909. https://doi.org/10.7150/thno.38625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Malatesta M (2016) Transmission electron microscopy for nanomedicine: novel applications for long-established techniques. Eur J Histochem 60:2751. https://doi.org/10.4081/ejh.2016.2751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Costanzo M, Malatesta M (2019) Embedding cell monolayers to investigate nanoparticle-plasmalemma interactions at transmission electron microscopy. Eur J Histochem 63:3026. https://doi.org/10.4081/ejh.2019.3026

    Article  CAS  PubMed Central  Google Scholar 

  9. Boyles MS, Kristl T, Andosch A, Zimmermann M, Tran N, Casals E et al (2015) Chitosan functionalisation of gold nanoparticles encourages particle uptake and induces cytotoxicity and pro-inflammatory conditions in phagocytic cells, as well as enhancing particle interactions with serum components. J Nanobiotechnol 13:84. https://doi.org/10.1186/s12951-015-0146-9

    Article  CAS  Google Scholar 

  10. Poussard S, Decossas M, Le Bihan O, Mornet S, Naudin G, Lambert O (2015) Internalization and fate of silica nanoparticles in C2C12 skeletal muscle cells: evidence of a beneficial effect on myoblast fusion. Int J Nanomedicine 10:1479–1492. https://doi.org/10.2147/IJN.S74158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Costanzo M, Carton F, Marengo A, Berlier G, Stella B, Arpicco S et al (2016) Fluorescence and electron microscopy to visualize the intracellular fate of nanoparticles for drug delivery. Eur J Histochem 60:2640. https://doi.org/10.4081/ejh.2016.2640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Messerschmidt C, Hofmann D, Kroeger A, Landfester K, Mailänder V, Lieberwirth I (2016) On the pathway of cellular uptake: new insight into the interaction between the cell membrane and very small nanoparticles. Beilstein J Nanotechnol 7:1296–1311. https://doi.org/10.3762/bjnano.7.121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Costanzo M, Vurro F, Cisterna B, Boschi F, Marengo A, Montanari E et al (2019) Uptake and intracellular fate of biocompatible nanocarriers in cycling and noncycling cells. Nanomedicine (Lond) 14:301–316. https://doi.org/10.2217/nnm-2018-0148

    Article  CAS  Google Scholar 

  14. Guglielmi V, Carton F, Vattemi G, Arpicco S, Stella B, Berlier G et al (2019) Uptake and intracellular distribution of different types of nanoparticles in primary human myoblasts and myotubes. Int J Pharm 560:347–356. https://doi.org/10.1016/j.ijpharm.2019.02.017

    Article  CAS  PubMed  Google Scholar 

  15. Hui Y, Yi X, Wibowo D, Yang G, Middelberg APJ, Gao H et al (2020) Nanoparticle elasticity regulates phagocytosis and cancer cell uptake. Sci Adv 6:eaaz4316. https://doi.org/10.1126/sciadv.aaz4316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Panyam J, Zhou WZ, Prabha S, Sahoo SK, Labhasetwar V (2002) Rapid endolysosomal escape of poly(DL-lactide-coglycolide) nanoparticles: implications for drug and gene delivery. FASEB J 16:1217–1226. https://doi.org/10.1096/fj.02-0088com

    Article  CAS  PubMed  Google Scholar 

  17. Nabiev I, Mitchell S, Davies A, Williams Y, Kelleher D, Moore R et al (2007) Nonfunctionalized nanocrystals can exploit a cell's active transport machinery delivering them to specific nuclear and cytoplasmic compartments. Nano Lett 7:3452–3461. https://doi.org/10.1021/nl0719832

    Article  CAS  PubMed  Google Scholar 

  18. Colonna C, Dorati R, Conti B, Modena T, Biggiogera M, Spedito A et al (2011) Induction of an in vitro reversible hypometabolism through chitosan-based nanoparticles. J Microencapsul 28:229–239. https://doi.org/10.3109/02652048.2011.557746

    Article  CAS  PubMed  Google Scholar 

  19. Malatesta M, Galimberti V, Cisterna B, Costanzo M, Biggiogera M, Zancanaro C (2013) Chitosan nanoparticles are efficient carriers for delivering biodegradable drugs to neuronal cells. Histochem Cell Biol 141:551–558. https://doi.org/10.1007/s00418-013-1175-9

    Article  CAS  PubMed  Google Scholar 

  20. Barthel AK, Dass M, Dröge M, Cramer J-M, Baumann D, Urban M et al (2014) Imaging the intracellular degradation of biodegradable polymer nanoparticles. Beilstein J Nanotechnol 5:1905–1917. https://doi.org/10.3762/bjnano.5.201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Braakhuis HM, Gosens I, Krystek P, Boere JAF, Cassee FR, Fokkens PHB et al (2014) Particle size dependent deposition and pulmonary inflammation after short-term inhalation of silver nanoparticles. Part Fibre Toxicol 11:49. https://doi.org/10.1186/s12989-014-0049-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Butler KS, Peeler DJ, Casey BJ, Dair BJ, Elespuru RK (2015) Silver nanoparticles: correlating nanoparticle size and cellular uptake with genotoxicity. Mutagenesis 30:577–591. https://doi.org/10.1093/mutage/gev020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lopes VR, Loitto V, Audinot JN, Bayat N, Gutleb AC, Cristobal S (2016) Dose-dependent autophagic effect of titanium dioxide nanoparticles in human HaCaT cells at non-cytotoxic levels. J Nanobiotechnol 14:22. https://doi.org/10.1186/s12951-016-0174-0

    Article  CAS  Google Scholar 

  24. Mazuel F, Espinosa A, Luciani N, Reffay M, Le Borgne R, Motte L et al (2016) Massive intracellular biodegradation of iron oxide nanoparticles evidenced magnetically at single-endosome and tissue levels. ACS Nano 10:7627–7638. https://doi.org/10.1021/acsnano.6b02876

    Article  CAS  PubMed  Google Scholar 

  25. Lammel T, Mackevica A, Johansson BR, Sturve J (2019) Endocytosis, intracellular fate, accumulation, and agglomeration of titanium dioxide (TiO(2)) nanoparticles in the rainbow trout liver cell line RTL-W1. Environ Sci Pollut Res Int 26:15354–15372. https://doi.org/10.1007/s11356-019-04856-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Costanzo M, Esposito E, Sguizzato M, Lacavalla MA, Drechsler M, Valacchi G et al (2021) Formulative study and intracellular fate evaluation of ethosomes and transethosomes for vitamin D3 delivery. Int J Mol Sci 22:5341. https://doi.org/10.3390/ijms22105341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Maranto AR (1982) Neuronal mapping: a photooxidation reaction makes Lucifer yellow useful for electron microscopy. Science 217:953–955. https://doi.org/10.1126/science.7112109

    Article  CAS  PubMed  Google Scholar 

  28. Sandell JH, Masland RH (1988) Photoconversion of some fluorescent markers to a diaminobenzidine product. J Histochem Cytochem 36:555–559. https://doi.org/10.1177/36.5.3356898

    Article  CAS  PubMed  Google Scholar 

  29. Malatesta M, Giagnacovo M, Costanzo M, Conti B, Genta I, Dorati R et al (2012) Diaminobenzidine photoconversion is a suitable tool for tracking the intracellular location of fluorescently labelled nanoparticles at transmission electron microscopy. Eur J Histochem 56:e20. https://doi.org/10.4081/ejh.2012.20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Malatesta M, Grecchi S, Chiesa E, Cisterna B, Costanzo M, Zancanaro C (2015) Internalized chitosan nanoparticles persist for long time in cultured cells. Eur J Histochem 59:2492. https://doi.org/10.4081/ejh.2015.2492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Costanzo M, Scolaro L, Berlier G, Marengo A, Grecchi S, Zancanaro C et al (2016) Cell uptake and intracellular fate of phospholipidic manganese-based nanoparticles. Int J Pharm 508:83–91. https://doi.org/10.1016/j.ijpharm.2016.05.019

    Article  CAS  PubMed  Google Scholar 

  32. Malatesta M, Zancanaro C, Costanzo M, Cisterna B, Pellicciari C (2013) Simultaneous ultrastructural analysis of fluorochrome-photoconverted diaminobenzidine and gold immunolabelling in cultured cells. Eur J Histochem 57:e26. https://doi.org/10.4081/ejh.2013.e26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pellicciari C, Giagnacovo M, Cisterna B, Costanzo M, Croce AC, Bottiroli G et al (2013) Ultrastructural detection of photosensitizing molecules by fluorescence photoconversion of diaminobenzidine. Histochem Cell Biol 139:863–871. https://doi.org/10.1007/s00418-012-1071-8

    Article  CAS  PubMed  Google Scholar 

  34. Grecchi S, Malatesta M (2014) Visualizing endocytotic pathways at transmission electron microscopy via diaminobenzidine photo-oxidation by a fluorescent cell-membrane dye. Eur J Histochem 58:2449. https://doi.org/10.4081/ejh.2014.2449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Malatesta M, Pellicciari C, Cisterna B, Costanzo M, Galimberti V, Biggiogera M et al (2014) Tracing nanoparticles and photosensitizing molecules at transmission electron microscopy by diaminobenzidine photo-oxidation. Micron 59:44–51. https://doi.org/10.1016/j.micron.2013.12.007

    Article  CAS  PubMed  Google Scholar 

  36. Mazia D, Schatten G, Sale W (1975) Adhesion of cells to surfaces coated with polylysine. Applications to electron microscopy. J Cell Biol 66:198–200. https://doi.org/10.1083/jcb.66.1.198

    Article  CAS  PubMed  Google Scholar 

  37. Fischer AH, Jacobson KA, Rose J, Zeller R (2008) Preparation of slides and coverslips for microscopy. CSH Protoc 2008:pdb.prot4988. https://doi.org/10.1101/pdb.prot4988

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuela Malatesta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Costanzo, M., Malatesta, M. (2023). Diaminobenzidine Photooxidation to Visualize Fluorescent Nanoparticles in Adhering Cultured Cells at Transmission Electron Microscopy. In: Pellicciari, C., Biggiogera, M., Malatesta, M. (eds) Histochemistry of Single Molecules. Methods in Molecular Biology, vol 2566. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2675-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2675-7_27

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2674-0

  • Online ISBN: 978-1-0716-2675-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics