Skip to main content

Mass Spectrometry Analysis of the Human Brain Sphingolipidome

  • Protocol
  • First Online:
Alzheimer’s Disease

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2561))

Abstract

In recent decades, mass spectrometry-based lipidomics has provided a fertile environment for scientific investigations of biochemical and mechanistic processes in biological systems. Notably, this approach has been used to characterize physiological and pathological processes relevant to the central nervous system by identifying changes in the sphingolipid content in the brain, cerebral spinal fluid, and blood plasma. However, despite a preponderance of studies identifying correlations between specific lipids and disease progression, this powerful resource has not yet substantively translated into clinically useful diagnostic assays. Part of this gap may be explained by insufficient depth of the lipidomic profiles in many studies, by lab-to-lab inconsistencies in methodology, and a lack of absolute quantification. These issues limit the identification of specific molecular species and the harmonization of results across independent studies. In this chapter, we contextualize these issues with recent reports identifying correlations between brain lipids and neurological diseases, and we describe the workflow our group has optimized for analysis of the blood plasma sphingolipidome, adapted to the characterization of the human brain tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mielke MM, Haughey NJ, Bandaru VVR et al (2010) Plasma ceramides are altered in MCI and predict cognitive decline and hippocampal volume loss. Alzheimers Dement 6:378–385. https://doi.org/10.1016/j.jalz.2010.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mielke MM, Bandaru VVR, Haughey NJ et al (2012) Serum ceramides increase the risk of Alzheimer disease: the Women’s Health and Aging Study II. Neurology 79:633–641. https://doi.org/10.1212/WNL.0b013e318264e380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Han X, Rozen S, Boyle SH et al (2011) Metabolomics in early Alzheimer’s disease: identification of altered plasma sphingolipidome using shotgun lipidomics. PLoS One 6:e21643. https://doi.org/10.1371/journal.pone.0021643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Huynh K, Lim WLF, Giles C et al (2020) Concordant peripheral lipidome signatures in two large clinical studies of Alzheimer’s disease. Nat Commun 11:5698. https://doi.org/10.1038/s41467-020-19473-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chua XY, Chai YL, Chew WS et al (2020) Immunomodulatory sphingosine-1-phosphates as plasma biomarkers of Alzheimer’s disease and vascular cognitive impairment. Alzheimers Res Ther 12:122. https://doi.org/10.1186/s13195-020-00694-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Narayanaswamy P, Shinde S, Sulc R et al (2014) Lipidomic “deep profiling”: an enhanced workflow to reveal new molecular species of signaling lipids. Anal Chem 86:3043–3047. https://doi.org/10.1021/ac4039652

    Article  CAS  PubMed  Google Scholar 

  7. Lam BWS, Yam TYA, Chen CP et al (2021) The noncanonical chronicles: emerging roles of sphingolipid structural variants. Cell Signal 79:109890. https://doi.org/10.1016/j.cellsig.2020.109890

    Article  CAS  PubMed  Google Scholar 

  8. Han X, Fagan AM, Cheng H et al (2003) Cerebrospinal fluid sulfatide is decreased in subjects with incipient dementia. Ann Neurol 54:115–119. https://doi.org/10.1002/ana.10618

    Article  CAS  PubMed  Google Scholar 

  9. Kosicek M, Zetterberg H, Andreasen N et al (2012) Elevated cerebrospinal fluid sphingomyelin levels in prodromal Alzheimer’s disease. Neurosci Lett 516:302–305. https://doi.org/10.1016/j.neulet.2012.04.019

    Article  CAS  PubMed  Google Scholar 

  10. Vidaurre OG, Haines JD, Katz Sand I et al (2014) Cerebrospinal fluid ceramides from patients with multiple sclerosis impair neuronal bioenergetics. Brain 137:2271–2286. https://doi.org/10.1093/brain/awu139

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sol J, Jové M, Povedano M et al (2021) Lipidomic traits of plasma and cerebrospinal fluid in amyotrophic lateral sclerosis correlate with disease progression. Brain Commun 3:fcab143. https://doi.org/10.1093/braincomms/fcab143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hejazi L, Wong JWH, Cheng D et al (2011) Mass and relative elution time profiling: two-dimensional analysis of sphingolipids in Alzheimer’s disease brains. Biochem J 438:165–175. https://doi.org/10.1042/BJ20110566

    Article  CAS  PubMed  Google Scholar 

  13. Han X, Holtzman DM, McKeel DW et al (2002) Substantial sulfatide deficiency and ceramide elevation in very early Alzheimer’s disease: potential role in disease pathogenesis. J Neurochem 82:809–818. https://doi.org/10.1046/j.1471-4159.2002.00997.x

    Article  CAS  PubMed  Google Scholar 

  14. Akyol S, Ugur Z, Yilmaz A et al (2021) Lipid profiling of Alzheimer’s disease brain highlights enrichment in glycerol(phospho)lipid, and sphingolipid metabolism. Cell 10:2591. https://doi.org/10.3390/cells10102591

    Article  CAS  Google Scholar 

  15. Couttas TA, Rustam YH, Song H et al (2020) A novel function of sphingosine kinase 2 in the metabolism of Sphinga-4,14-diene lipids. Meta 10:236. https://doi.org/10.3390/metabo10060236

    Article  CAS  Google Scholar 

  16. Podbielska M, Szulc ZM, Ariga T et al (2020) Distinctive sphingolipid patterns in chronic multiple sclerosis lesions. J Lipid Res 61:1464–1479. https://doi.org/10.1194/jlr.RA120001022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Don AS, Hsiao J-HT, Bleasel JM et al (2014) Altered lipid levels provide evidence for myelin dysfunction in multiple system atrophy. Acta Neuropathol Commun 2:150. https://doi.org/10.1186/s40478-014-0150-6

    Article  PubMed  PubMed Central  Google Scholar 

  18. Di Pardo A, Basit A, Armirotti A et al (2017) De novo synthesis of sphingolipids is defective in experimental models of Huntington’s disease. Front Neurosci 11:698. https://doi.org/10.3389/fnins.2017.00698

    Article  PubMed  PubMed Central  Google Scholar 

  19. Fitzner D, Bader JM, Penkert H et al (2020) Cell-type- and brain-region-resolved mouse brain Lipidome. Cell Rep 32:108132. https://doi.org/10.1016/j.celrep.2020.108132

    Article  CAS  PubMed  Google Scholar 

  20. Ju J, Yang X, Jiang J et al (2021) Structural and lipidomic alterations of striatal myelin in 16p11.2 deletion mouse model of autism spectrum disorder. Front Cell Neurosci 15:718720. https://doi.org/10.3389/fncel.2021.718720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang C, Palavicini JP, Han X (2021) A lipidomics atlas of selected sphingolipids in multiple mouse nervous system regions. Int J Mol Sci 22:11358. https://doi.org/10.3390/ijms222111358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Burla B, Muralidharan S, Wenk MR, Torta F (2018) Sphingolipid analysis in clinical research. Methods Mol Biol 1730:135–162. https://doi.org/10.1007/978-1-4939-7592-1_11

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Torta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chua, X.Y., Huang, R., Herr, D., Lai, M.K.P., Wenk, M.R., Torta, F. (2023). Mass Spectrometry Analysis of the Human Brain Sphingolipidome. In: Chun, J. (eds) Alzheimer’s Disease. Methods in Molecular Biology, vol 2561. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2655-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2655-9_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2654-2

  • Online ISBN: 978-1-0716-2655-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics