Skip to main content

Nekhoroshev Theory

  • Reference work entry
  • First Online:
Perturbation Theory

Part of the book series: Encyclopedia of Complexity and Systems Science Series ((ECSSS))

  • 1165 Accesses

  • Originally published in

Glossary

Quasi integrable Hamiltonian:

A Hamiltonian is quasi integrable if it is close to another Hamiltonian whose associated system is integrable by quadrature. Here, we will consider real analytic Hamiltonians on a domain \( \mathcal{D} \) which admit a holomorphic extension on a complex strip \( {\mathcal{D}}_{\mathrm {\mathbb{C}}} \) around \( \mathcal{D} \) and the closeness to the integrable Hamiltonian is measured with the supremum norm ‖.‖ over \( {\mathcal{D}}_{\mathrm {\mathbb{C}}} \).

Exponentially stable Hamiltonian:

An integrable Hamiltonian governs a system which admits a collection of first integral. We say that an integrable Hamiltonian h is exponentially stable if for any small enough Hamiltonian perturbation of h, the solutions of the perturbed system are at least defined over timescales which are exponentially long with respect to the inverse of the size of the perturbation. Moreover, the first integrals of the integrable system should remain nearly constant...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 329.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

Primary Literature

  • Arnold VI (1964) Instability of dynamical systems with several degrees of freedom. Sov Math Dokl 5:581–585

    Google Scholar 

  • Arnold VI, Kozlov VV, Neishtadt AI (2006) Mathematical aspects of classical and celestial mechanics. In: Encyclopaedia of mathematical sciences 3. Dynamical systems 3, 3rd edn. Springer, New York

    Google Scholar 

  • Bambusi D (1999a) Nekhoroshev theorem for small amplitude solutions in nonlinear Schrödinger equations. Math Z 230(2):345–387

    Article  MathSciNet  MATH  Google Scholar 

  • Bambusi D (1999b) On long time stability in Hamiltonian perturbations of non-resonant linear PDEs. Nonlinearity 12(4):823–850

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Bambusi D, Giorgilli A (1993) Exponential stability of states close to resonance in infinite-dimensional Hamiltonian systems. J Stat Phys 71(3–4):569–606

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Bambusi D, Grébert B (2006) Birkhoff normal form for partial differential equations with tame modulus. Duke Math J 135(3):507–567. Bambusi D, Nekhoroshev NN (2002) Long time stability in perturbations of completely resonant PDE's. Acta Appl Math 70(1–3):1–22

    Article  MathSciNet  MATH  Google Scholar 

  • Benettin G (2005) Physical applications of Nekhoroshev theorem and exponential estimates. In: Giorgilli A (ed) Cetraro (2000) Hamiltonian dynamics, theory and applications. Springer, New York

    Chapter  Google Scholar 

  • Benettin G, Fasso F (1996) Fast rotations of the rigid body: a study by Hamiltonian perturbation theory, I. Nonlinearity 9(1):137–186

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Benettin G, Gallavotti G (1986) Stability of motions near resonances in quasi-integrable Hamiltonian systems. J Stat Phys 44(3–4):293–338

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Benettin G, Giorgilli A (1994) On the Hamiltonian interpolation of near-to-the-identity symplectic mappings with application to symplectic integration algorithms. J Stat Phys 74(5–6):1117–1143

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Benettin G, Sempio P (1994) Adiabatic invariants and trapping of a point charge in a strong non-uniform magnetic field. Nonlinearity 7(1):281–303

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Benettin G, Galgani L, Giorgilli A (1985) A proof of Nekhorochev’s theorem for the stability times in nearly-integrable Hamiltonian systems. Celest Mech 37:1–25

    Article  MATH  ADS  Google Scholar 

  • Benettin G, Fröhlich J, Giorgilli A (1988) A Nekhoroshev-type theorem for Hamiltonian systems with infinitely many degrees of freedom. Commun Math Phys 119(1):95–108

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Benettin G, Fasso F, Guzzo M (1998) Nekhorochev stability of L4 and L5 in the spatial restricted three body problem. Regul Chaotic Dyn 3(3):56–72

    Article  MathSciNet  MATH  Google Scholar 

  • Blaom AD (2001) A geometric setting for Hamiltonian perturbation theory. Mem Am Math Soc 727(xviii):112

    Google Scholar 

  • Bogolyubov NN, Mitropol’skij YA (1958) Asymptotic methods in the theory of nonlinear oscillations, 2nd edn. Nauka, Moscow. Engl. Transl. (1961) Gordon and Breach, New York

    Google Scholar 

  • Bourgain J (2004) Remarks on stability and diffusion in high-dimensional Hamiltonian systems and partial differential equations. Ergod Theory Dyn Syst 24(5):1331–1357

    Article  MathSciNet  MATH  Google Scholar 

  • Carati A, Galgani L, Giorgilli A, Ponno A (2002) The Fermi–Pasta–Ulam problem. Nuovo Cimento B 117:1017–1026

    ADS  Google Scholar 

  • Carati A, Galgani L, Giorgilli A (2006) Dynamical systems and thermodynamics. In: Françoise JP, Naber GL, Tsun TS (eds) Encyclopedia of mathematical physics. Elsevier, Amsterdam

    MATH  Google Scholar 

  • Celletti A, Giorgilli A (1991) On the stability of the Lagrangian points in the spatial restricted problem of three bodies. Celest Mech Dyn Astron 50(1):31–58

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Chirikov BV (1979) A universal instability in many dimensional oscillator systems. Phys Rep 52:263–279

    Article  ADS  Google Scholar 

  • Delshams A, Gutierrez P (1996) Effective stability and KAM theory. J Differ Equ 128(2):415–490

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Dullin H, Fassò F (2004) An algorithm for detecting directional quasi-convexity. BIT 44(3):571–584

    Article  MathSciNet  MATH  Google Scholar 

  • Dumas HS (1993) A Nekhoroshev-like theory of classical particle channeling in perfect crystals. In: Jones CKRT et al (eds) Dynamics reported. Expositions in dynamical systems, new series, vol 2. Springer, Berlin

    Google Scholar 

  • Dumas HS (2005) Mathematical theories of classical particle channeling in perfect crystals. Nucl Inst Meth Phys Res Sect B (Beam Interactions with Materials and Atoms) 234(1–2):3–13

    Article  ADS  Google Scholar 

  • Efthymiopoulos C, Giorgilli A, Contopoulos G (2004) Nonconvergence of formal integrals. II: Improved estimates for the optimal order of truncation. J Phys A Math Gen 37(45):10831–10858

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Fassò F, Lewis D (2001) Stability properties of the Riemann ellipsoids. Arch Ration Mech Anal 158(4):259–292

    Article  MathSciNet  MATH  Google Scholar 

  • Fassò F, Guzzo M, Benettin G (1998) Nekhoroshev-stability of elliptic equilibria of Hamiltonian systems. Commun Math Phys 197(2):347–360

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Giorgilli A (1998) On the problem of stability for near to integrable Hamiltonian systems. In: Proceedings of the international congress of Mathematicians, Berlin 1998. Documenta Mathematica III, pp 143–152

    Google Scholar 

  • Giorgilli A, Morbidelli A (1997) Invariant KAM tori and global stability for Hamiltonian systems. Z Angew Math Phys 48(1):102–134

    Article  MathSciNet  MATH  Google Scholar 

  • Giorgilli A, Skokos C (1997) On the stability of the Trojan asteroids. Astron Astroph 317:254–261

    ADS  Google Scholar 

  • Giorgilli A, Zehnder E (1992) Exponential stability for time dependent potential. ZAMP 43:827–855

    MathSciNet  MATH  ADS  Google Scholar 

  • Giorgilli A, Delshams A, Fontich E, Galgani L, Simó C (1989) Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to the restricted three bodies problem. J Differ Equ 77:167–198

    Article  MATH  ADS  Google Scholar 

  • Gramchev T, Popov G (1995) Nekhoroshev type estimates for billiard ball maps. Ann Inst Fourier 45(3):859–895

    Article  MathSciNet  Google Scholar 

  • Guzzo M (2003) Nekhoroshev stability of asteroids. Triennal report 2000–2003 of Commission 7-Celestial Mechanics and dynamical Astronomy of the IAU; Reports on Astronomy, 1999–2002. Transactions of the International Astronomical Union, vol XXVA, Astronomical Society of the Pacific

    Google Scholar 

  • Guzzo M (2004) A direct proof of the Nekhoroshev theorem for nearly integrable symplectic maps. Ann Henri Poincaré 5(6):1013–1039

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Guzzo M, Benettin G (2001) A spectral formulation of the Nekhoroshev theorem and its relevance for numerical and experimental data analysis. Discret Contin Dyn Syst Ser B 1(1):1–28

    MathSciNet  MATH  Google Scholar 

  • Guzzo M, Morbidelli A (1997) Construction of a Nekhoroshev-like result for the asteroid belt dynamical system Celest. Mech Dyn Astron 66:255–292

    Article  MATH  ADS  Google Scholar 

  • Guzzo M, Lega E, Froeschlé C (2006) Diffusion and stability in perturbed non-convex integrable systems. Nonlinearity 19(5):1049–1067

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Hairer E, Lubich C, Wanner G (2006) Geometric numerical integration. Structure-preserving algorithms for ordinary differential equations. Springer Series in Computational Mathematics, 2nd edn, vol 31. Springer, New York

    Google Scholar 

  • Ilyashenko IS (1986) A steepness test for analytic functions. Russ Math Surv 41:229–230

    Article  Google Scholar 

  • Kuksin SB (2006) Hamiltonian PDEs (with an appendix by Dario Bambusi). In: Hasselblatt B (ed) Handbook of dynamical systems, vol 1B. Elsevier, Amsterdam

    Google Scholar 

  • Kuksin S, Pöschel J (1994) On the inclusion of analytic symplectic maps in analytic Hamiltonian flows and its applications. In: Kuksin S, Lazutkin VF, Pöschel J (eds) Proceedings of the 1991 Euler Institute conference on dynamical systems. Prog nonlinear differential equation with application (12). Birkhäuser, Basel

    Google Scholar 

  • Littlewood JE (1959) On the equilateral configuration in the restricted problem of the three bodies. Proc Lond Math Soc 9(3):343–372

    Article  MathSciNet  MATH  Google Scholar 

  • Lochak P (1992) Canonical perturbation theory via simultaneous approximation. Russ Math Surv 47:57–133

    Article  MATH  Google Scholar 

  • Lochak P (1993) Hamiltonian perturbation theory: periodic orbits, resonances and intermittency. Nonlinearity 6(6):885–904

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Lochak P (1995) Stability of Hamiltonian systems over exponentially long times: the near-linear case. In: Dumas HS, Meyer K, Schmidt D (eds) Hamiltonian dynamical systems – history, theory and applications. IMA conference proceedings series, vol 63. Springer, New York, pp 221–229

    Chapter  Google Scholar 

  • Lochak P, Meunier C (1988) Multiphase averaging methods for Hamiltonian systems. Applied Mathematical Science series, vol 72. Springer, New York

    Google Scholar 

  • Lochak P, Neishtadt AI (1992) Estimates of stability time for nearly integrable systems with a quasiconvex Hamiltonian. Chaos 2(4):495–499

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Lochak P, Neishtadt AI, Niederman L (1994) Stability of nearly integrable convex Hamiltonian systems over exponentially long times. In: Kuksin S, Lazutkin VF, Pöschel J (eds) Proceedings of the 1991 Euler Institute Conference on Dynamical Systems. Prog nonlinear differential equation with application (12). Birkhäuser, Basel

    Google Scholar 

  • Marco JP, Lochak P (2005) Diffusion times and stability exponents for nearly integrable analytic systems. Central Eur J Math 3(3):342–397

    MathSciNet  MATH  Google Scholar 

  • Marco JP, Sauzin D (2003) Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems. Publ Math Inst Hautes Etudes Sci 96:199–275

    Article  MATH  Google Scholar 

  • Meyer KR, Hall GR (1992) Introduction to Hamiltonian dynamical systems and the N-Body problem. Applied mathematical sciences, vol 90. Springer, New York

    Google Scholar 

  • Moan PC (2004) On the KAM and Nekhoroshev theorems for symplectic integrators and implications for error growth. Nonlinearity 17(1):67–83

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Morbidelli A, Giorgilli A (1995) Superexponential stability of KAM tori. J Stat Phys 78:1607–1617

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Morbidelli A, Guzzo M (1997) The Nekhoroshev theorem and the asteroid belt dynamical system. Celest Mech Dyn Astron 65(1–2):107–136

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Moser J (1955) Stabilitätsverhalten Kanonisher Differential gleichungssysteme. Nachr Akad Wiss Göttingen, Math Phys Kl IIa 6:87–120

    Google Scholar 

  • Neishtadt AI (1981) On the accuracy of conservation of the adiabatic invariant. Prikl Mat Mekh 45:80–87. Translated in J Appl Math Mech 45:58–63. Neishtadt AI (1984) The separation of motions in systems with rapidly rotating phase. J Appl Math Mech 48:133–139

    Google Scholar 

  • Nekhorochev NN (1973) Stable lower estimates for smooth mappings and for gradients of smooth functions. Math USSR Sb 19(3):425–467

    Article  Google Scholar 

  • Nekhorochev NN (1977) An exponential estimate of the time of stability of nearly integrable Hamiltonian systems. Russ Math Surv 32:1–65

    Article  MathSciNet  Google Scholar 

  • Nekhorochev NN (1979) An exponential estimate of the time of stability of nearly integrable Hamiltonian systems 2. Trudy Sem Petrovs 5:5–50. Translated In: Oleinik OA (ed) Topics in Modern Mathematics. Petrovskii Semin, vol 5. Consultant Bureau, New York

    Google Scholar 

  • Niederman L (1996) Stability over exponentially long times in the planetary problem. Nonlinearity 9(6):1703–1751

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Niederman L (1998) Nonlinear stability around an elliptic equilibrium point in an Hamiltonian system. Nonlinearity 11:1465–1479

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Niederman L (2004) Exponential stability for small perturbations of steep integrable Hamiltonian systems. Erg Theor Dyn Syst 24(2):593–608

    Article  MathSciNet  MATH  Google Scholar 

  • Niederman L (2006) Hamiltonian stability and subanalytic geometry. Ann Inst Fourier 56(3):795–813

    Article  MathSciNet  MATH  Google Scholar 

  • Niederman L (2007) Prevalence of exponential stability among nearly integrable Hamiltonian systems. Erg Theor Dyn Syst 27(3):905–928. Northrop TG (1963) The adiabatic motion of charged particles. Interscience Publishers, New York

    Google Scholar 

  • Poincaré H (1892) Méthodes Nouvelles de la Mécanique Céleste, vol 4. Blanchard, Paris

    MATH  Google Scholar 

  • Pöschel J (1993) Nekhorochev estimates for quasi-convex Hamiltonian systems. Math Z 213:187–217

    Article  MathSciNet  MATH  Google Scholar 

  • Pöschel J (1999) On Nekhoroshev’s estimate at an elliptic equilibrium. Int Math Res Not 1999(4):203–215

    Article  MathSciNet  MATH  Google Scholar 

  • Ramis JP, Schäfke R (1996) Gevrey separation of fast and slow variables. Nonlinearity 9(2):353–384

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Steichen D, Giorgilli A (1998) Long time stability for the main problem of artificial satellites. Cel Mech 69:317–330

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Treschev DV (1994) Continuous averaging in Hamiltonian systems. In: Kuksin S, Lazutkin VF, Pöschel J (eds) Proceedings of the 1991 Euler Institute conference on dynamical systems. Prog nonlinear differential equation with application (12). Birkhäuser, Basel

    Google Scholar 

  • Valdinoci E (2000) Estimates for non-resonant normal forms in Hamiltonian perturbation theory. J Stat Phys 101(3–4):905–919

    Article  MathSciNet  MATH  Google Scholar 

Books and Reviews

  • Arnold VI (1983) Geometrical methods in the theory of ordinary differential equations. Transl. from the Russian by Joseph Szuecs, Mark Levi (ed) Grundlehren der Mathematischen Wissenschaften 250. Springer, New York

    Google Scholar 

  • Arnold VI, Kozlov VV, Neishtadt AI (2006) Mathematical aspects of classical and celestial mechanics. Encyclopaedia of Mathematical Sciences 3. Dynamical systems 3, 3rd revised edn. Springer, New York

    Google Scholar 

  • Benettin G (2005) Physical applications of Nekhoroshev theorem and exponential estimates. In: Giorgilli A (ed) Cetraro (2000) Hamiltonian dynamics, theory and applications. Springer, New York

    Chapter  Google Scholar 

  • Giorgilli A (2003) Exponential stability of Hamiltonian systems. Dynamical systems, Part I. Hamiltonian systems and celestial mechanics. Selected papers from the Research Trimester held in Pisa, Italy, February 4–April 26, 2002. Pisa: Scuola Normale Superiore. Pubblicazioni del Centro di Ricerca Matematica Ennio de Giorgi. Proceedings, 87–198

    Google Scholar 

  • Sanders JA, Verhulst F, Murdock J (2007) Averaging methods in nonlinear dynamical systems, 2nd edn. Applied mathematical sciences 59. Springer, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendix A

Appendix A

An Example of Divergence Without Small Denominators

We would like to develop the following example of Neishtadt (Nekhorochev 1977) where the phenomenons of divergence without small denominators and summation up to an exponentially small remainder appear in its simplest setting (see also Benettin 2005 for another example).

Consider the quasi integrable system governed by the Hamiltonian

$$ {\displaystyle \begin{array}{l}\mathcal{H}\left({I}_1,{I}_2;{\theta}_1,{\theta}_2\right)={I}_1-\varepsilon \left[{I}_2-\cos \left({\theta}_1\right)f\left({\theta}_2\right)\right]\\ {}\mathrm {defined}\ \mathrm {over}\ {\mathrm {\mathbb{R}}}^2\times {\mathbbm{T}}^2,\end{array}} $$
(11)

with

$$ f\left(\theta \right)=\sum \limits_{m\ge 1}\frac{\alpha_m}{m}\cos \left(m\, \theta \right), $$

where αm = eαm for 0 < α ≤ 1, this last choice corresponds to the exponential decay of the Fourier coefficients for a holomorphic function.

Indeed, f(θ) =  Im (g(−α + )) where g(z) = (exp(z) − 1)−1 and the complex pole of f which is closest to the real axis is located at −.

Conversely, all real function which admits a holomorphic extension over a complex strip of width α (i.e.: ∣ Im (z) ∣  ≤ α) has Fourier coefficients bounded by \( {\left(C{\alpha}_m\right)}_{m\in {\mathrm {\mathbb{N}}}^{\ast }} \) for some constant C > 0.

As in the section “Hamiltonian Perturbation Theory”, it is possible to eliminate formally completely the fast angle θ1 in the perturbation without the occurrence of any small denominators.

Indeed, one can consider a normalizing transformation generated by X(θ1, θ2) = ∑n ≥ 1εnXn(θ1, θ2) where the functions Xn satisfy the homological equations:

$$ {\displaystyle \begin{array}{c}{\partial}_{\theta_1}{X}_1\left({\theta}_1,{\theta}_2\right)=\cos \left({\theta}_1\right)f\left({\theta}_2\right)\ \mathrm {and}\ \\ {}{\partial}_{\theta_1}{X}_n\left({\theta}_1,{\theta}_2\right)={\partial}_{\theta_2}{X}_{n-1}\left({\theta}_1,{\theta}_2\right).\end{array}} $$

The solutions can be written \( {X}_n\left({\theta}_1,{\theta}_2\right)=\cos \left({\theta}_1-n\frac{\pi }{2}\right){f}^{\left(n-1\right)}\left({\theta}_2\right) \), hence:

$$ {\displaystyle \begin{array}{l}X\left({\theta}_1,{\theta}_2\right)=\sum \limits_{n\in {\mathrm {\mathbb{N}}}^{\ast }}{\varepsilon}^n\sum \limits_{m\in {\mathrm {\mathbb{N}}}^{\ast }}\frac{\alpha_m}{m^2}{m}^n\\ {}\qquad \cdot \cos \left({\theta}_1-n\frac{\pi }{2}\right)\sin \left(m{\theta}_2+n\frac{\pi }{2}\right)\end{array}} $$

and, for instance,

$$ X\left(\frac{\pi }{2},0\right)=\sum \limits_{m\in {\mathrm {\mathbb{N}}}^{\ast }}\sum \limits_{k\in \mathrm {\mathbb{N}}}\frac{{\mathrm {e}}^{-\alpha m}}{m^2}{\left(\varepsilon m\right)}^{2k+1} $$

which is divergent for all ε > 0 since ε ≥ 1/m for m large enough.

We see that divergence comes from coefficients arising with successive differentiations.

On the other hand, if one considers the transformation generated by the truncated Hamiltonian \( {\sum}_{n\ge 1}^N{\varepsilon}^n{X}_n\left({\theta}_1,{\theta}_2\right) \) then the transformed Hamiltonian becomes

$$ \mathcal{H}\left({I}_1,{I}_2;{\theta}_1,{\theta}_2\right)={I}_1-\varepsilon {I}_2+{\varepsilon}^{N+1}{\partial}_{\theta_2}{X}_N\left({\theta}_1,{\theta}_2\right), $$

where \( {\partial}_{\theta_2}{X}_N\left({\theta}_1,{\theta}_2\right)=\cos \left({\theta}_1-N\frac{\pi }{2}\right){f}^{(N)}\left({\theta}_2\right) \).

Especially, with g(z) = 1/ exp (z) − 1, we have:

$$ {\displaystyle \begin{array}{l}{\partial}_{\theta_2}{X}_{2N}\left({\theta}_1,{\theta}_2\right)\\ {}\quad =-\cos \left({\theta}_1\right)\operatorname{Re}\left({g}^{\left(2N-1\right)}\left(-\alpha +i{\theta}_2\right)\right)\\ {}\mathrm {for}\ N>0,\\ {}{\partial}_{\theta_2}{X}_{2N+1}\left({\theta}_1,{\theta}_2\right)=\sin \left({\theta}_1\right)\operatorname{Im}\left({g}^{(2N)}\left(-\alpha +i{\theta}_2\right)\right)\\ {}\mathrm {for}\ N>0,\end{array}} $$

Now, around the real axis, the main term in the asymptotic expansion of g(n)(z) as n goes to infinity is given by the derivative of the polar term 1/z in the Laurent expansion of g at 0.

Indeed, we consider the function h(z) = g(z) − 1/z which is real analytic and admits an analyticity width of size 2π around the real axis. Hence, Cauchy estimates ensure that for n large enough and z in the strip of width p around the real axis, the derivative h(n)(z) becomes negligible with respect to the derivative of 1/z.

Consequently, g(n)(z) is equivalent to (−1)nn ! /zn + 1 as n goes to infinity for z in the strip of width p around the real axis.

Hence, the remainder \( {\partial}_{\theta_2}{X}_N\left({\theta}_1,{\theta}_2\right) \) has a size of order (N − 1) ! /αN for N large. This latter estimate cannot be improved, since \( {\partial}_{\theta_2}{X}_{2N}\left(\pi, 0\right) \) and \( {\partial}_{\theta_2}{X}_{2N+1}\left(\pi /2,\alpha \tan \left(\pi /4N+2\right)\right) \) admit the same size of order (N − 1) ! /αN for N large.

Now, we can make a “summation at the smallest term” as in section “The Case of a Single Frequency System” to obtain an optimal normalization with an exponentially small remainder.

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Niederman, L. (2009). Nekhoroshev Theory. In: Gaeta, G. (eds) Perturbation Theory. Encyclopedia of Complexity and Systems Science Series. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-2621-4_352

Download citation

Publish with us

Policies and ethics