Skip to main content

High-Resolution Mass Spectrometry in Identification of New Analytes & Metabolites

  • Protocol
  • First Online:
Methods for Novel Psychoactive Substance Analysis

Abstract

Numerous forensic institutes including the National Board of Forensic Medicine in Sweden have been using high-resolution mass spectrometry to identify new psychoactive substances (NPS) and/or their metabolites for more than a decade. Based on these experiences, current practices in generating, processing, and understanding data are presented in this chapter. Due to the rapidly changing market, searching for NPS should begin before reference materials are available. Adding masses to the screening library is one tool, but it is also important to consider the case history and circumstances when identifying new compounds. Similarly, lacking dosing studies, NPS metabolites are often identified using a combination of in vitro model systems and authentic case samples. This chapter provides advice, tips, and tricks on how to design this type of studies. During both screening and metabolite identification, it is important to critically evaluate the data and consider alternative explanations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kronstrand R (1996) Identification of N-methyl-1-(3,4-methylenedioxyphenyl)-2-butanamine (MBDB) in urine from drug users. J Anal Toxicol 20(6):512–516

    Article  CAS  PubMed  Google Scholar 

  2. Shulgin A, Shulgin A (1991) PiHKAL: a chemical love story. Transform Press, Berkeley

    Google Scholar 

  3. Shulgin A, Shulgin A (1997) TIHKAL: the Continuation. Transform Press, Berkeley

    Google Scholar 

  4. Meyer MR, Peters FT, Maurer HH (2010) Automated mass spectral deconvolution and identification system for GC-MS screening for drugs, poisons, and metabolites in urine. Clin Chem 56(4):575–584

    Article  CAS  PubMed  Google Scholar 

  5. Druid H, Holmgren P (1997) A compilation of fatal and control concentrations of drugs in postmortem femoral blood. J Forensic Sci 42(1):79–87

    Article  PubMed  Google Scholar 

  6. Elliott SP, Hale KA (1998) Applications of an HPLC-DAD drug-screening system based on retention indices and UV spectra. J Anal Toxicol 22(4):279–289

    Article  CAS  PubMed  Google Scholar 

  7. Bogusz M, Wu M (1991) Standardized HPLC/DAD system, based on retention indices and spectral library, applicable for systematic toxicological screening. J Anal Toxicol 15(4):188–197

    Article  CAS  PubMed  Google Scholar 

  8. Wikström M, Thelander G, Nyström I et al (2010) Two fatal intoxications with the new designer drug methedrone (4-methoxymethcathinone). J Anal Toxicol 34(9):594–598

    Article  PubMed  Google Scholar 

  9. Kronstrand R, Nyström I, Strandberg J et al (2004) Screening for drugs of abuse in hair with ion spray LC-MS-MS. Forensic Sci Int 145(2-3):183–190

    Article  CAS  PubMed  Google Scholar 

  10. Awad T, Clark CR, DeRuiter J (2006) Chromatographic and mass spectral studies on methoxymethcathinones related to 3,4-methylenedioxymethamphetamine. J Chromatogr Sci 44(3):155–161

    Article  CAS  PubMed  Google Scholar 

  11. Pierzynski HG, Neubauer L, Choi C et al (2017) Tips for interpreting GC-MS fragmentation of unknown substituted Fentanyls. Cayman Currents 28:1–3. https://www.caymanchem.com/cms/caymanchem/LiteratureCMS/800181.pdf. Accessed 9 Aug 2021

    Google Scholar 

  12. Kronstrand R, Roman M, Thelander G et al (2011) Unintentional fatal intoxications with mitragynine and O-desmethyltramadol from the herbal blend Krypton. J Anal Toxicol 35(4):242–247

    Article  CAS  PubMed  Google Scholar 

  13. Kronstrand R, Roman M, Andersson M et al (2013) Toxicological findings of synthetic cannabinoids in recreational users. J Anal Toxicol 37(8):534–541

    Article  CAS  PubMed  Google Scholar 

  14. Arntson A, Ofsa B, Lancaster D et al (2013) Validation of a novel immunoassay for the detection of synthetic cannabinoids and metabolites in urine specimens. J Anal Toxicol 37(5):284–290

    Article  CAS  PubMed  Google Scholar 

  15. Barnes AJ, Young S, Spinelli E et al (2014) Evaluation of a homogenous enzyme immunoassay for the detection of synthetic cannabinoids in urine. Forensic Sci Int 241:27–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Castaneto MS, Desrosiers NA, Ellefsen K et al (2014) Method validation of the biochip array technology for synthetic cannabinoids detection in urine. Bioanalysis 6(21):2919–2930

    Article  CAS  PubMed  Google Scholar 

  17. de Jager AD, Warner JV, Henman M et al (2012) LC-MS/MS method for the quantitation of metabolites of eight commonly-used synthetic cannabinoids in human urine–an Australian perspective. J Chromatogr B Analyt Technol Biomed Life Sci 897:22–31

    Article  PubMed  Google Scholar 

  18. Scheidweiler KB, Huestis MA (2014) Simultaneous quantification of 20 synthetic cannabinoids and 21 metabolites, and semi-quantification of 12 alkyl hydroxy metabolites in human urine by liquid chromatography-tandem mass spectrometry. J Chromatogr A 1327:105–117

    Article  CAS  PubMed  Google Scholar 

  19. Freijo TD Jr, Harris SE, Kala SV (2014) A rapid quantitative method for the analysis of synthetic cannabinoids by liquid chromatography-tandem mass spectrometry. J Anal Toxicol 38(8):466–478

    Article  CAS  PubMed  Google Scholar 

  20. Castaneto MS, Scheidweiler KB, Gandhi A et al (2015) Quantitative urine confirmatory testing for synthetic cannabinoids in randomly collected urine specimens. Drug Test Anal 7(6):483–493

    Article  CAS  PubMed  Google Scholar 

  21. Roman M, Ström L, Tell H et al (2013) Liquid chromatography/time-of-flight mass spectrometry analysis of postmortem blood samples for targeted toxicological screening. Anal Bioanal Chem 405(12):4107–4125

    Article  CAS  PubMed  Google Scholar 

  22. Kronstrand R, Brinkhagen L, Birath-Karlsson C et al (2014) LC-QTOF-MS as a superior strategy to immunoassay for the comprehensive analysis of synthetic cannabinoids in urine. Anal Bioanal Chem 406(15):3599–3609

    Article  CAS  PubMed  Google Scholar 

  23. Taylor AM. Accurate mass screening workflows for the analysis of novel psychoactive substances. AB Sciex. https://sciex.com/content/dam/SCIEX/pdf/tech-notes/all/RUO-MKT-02-1884-A_MasterView_TripleTOF_designer_drug.pdf. Accessed 9 Aug 2021

  24. Davidsen A, Mardal M, Linnet K et al (2020) How to perform spectrum-based LC-HR-MS screening for more than 1,000 NPS with HighResNPS consensus fragment ions. PLoS One 15(11):e0242224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gerostamoulos D, Elliott S, Walls HC et al (2016) To measure or not to measure? That is the NPS question. J Anal Toxicol 40(4):318–320

    Article  CAS  PubMed  Google Scholar 

  26. Wikström M, Thelander G, Dahlgren M et al (2013) An accidental fatal intoxication with methoxetamine. J Anal Toxicol 37(1):43–46

    Article  PubMed  Google Scholar 

  27. Åstrand A, Vikingsson S, Lindstedt D et al (2018) Metabolism study for CUMYL-4CN-BINACA in human hepatocytes and authentic urine specimens: free cyanide is formed during the main metabolic pathway. Drug Test Anal 10(8):1270–1279

    Article  Google Scholar 

  28. Guerrieri D, Rapp E, Roman M et al (2017) Acrylfentanyl: another new psychoactive drug with fatal consequences. Forensic Sci Int 277:e21–e29

    Article  CAS  PubMed  Google Scholar 

  29. Guerrieri D, Kjellqvist F, Kronstrand R et al (2019) Validation and cross-reactivity data for Fentanyl analogs with the Immunalysis Fentanyl ELISA. J Anal Toxicol 43(1):18–24

    Article  CAS  PubMed  Google Scholar 

  30. Verstraete AG (2004) Detection times of drugs of abuse in blood, urine, and oral fluid. Ther Drug Monit 26(2):200–205

    Article  CAS  PubMed  Google Scholar 

  31. Vikingsson S, Gréen H, Brinkhagen L et al (2016) Identification of AB-FUBINACA metabolites in authentic urine samples suitable as urinary markers of drug intake using liquid chromatography quadrupole tandem time of flight mass spectrometry. Drug Test Anal 8(9):950–956

    Article  CAS  PubMed  Google Scholar 

  32. Diao X, Wohlfarth A, Pang S et al (2016) High-resolution mass spectrometry for characterizing the metabolism of synthetic Cannabinoid THJ-018 and its 5-Fluoro Analog THJ-2201 after incubation in human hepatocytes. Clin Chem 62(1):157–169

    Article  CAS  PubMed  Google Scholar 

  33. Doerr AA, Nordmeier F, Walle N et al (2020) Can a recently developed Pig model be used for in vivo metabolism studies of 7-Azaindole derived synthetic Cannabinoids? A study using 5F-MDMB-P7AICA. J Anal Toxicol 45(6):593–604

    Article  Google Scholar 

  34. Giorgetti A, Mogler L, Haschimi B et al (2020) Detection and phase I metabolism of the 7-azaindole-derived synthetic cannabinoid 5F-AB-P7AICA including a preliminary pharmacokinetic evaluation. Drug Test Anal 12(1):78–91

    Article  CAS  PubMed  Google Scholar 

  35. Haschimi B, Mogler L, Halter S et al (2019) Detection of the recently emerged synthetic cannabinoid 4F-MDMB-BINACA in “legal high” products and human urine specimens. Drug Test Anal 11(9):1377–1386

    Article  CAS  PubMed  Google Scholar 

  36. Hutter M, Moosmann B, Kneisel S et al (2013) Characteristics of the designer drug and synthetic cannabinoid receptor agonist AM-2201 regarding its chemistry and metabolism. J Mass Spectrom 48(7):885–894

    Article  CAS  PubMed  Google Scholar 

  37. Toennes SW, Geraths A, Pogoda W et al (2018) Excretion of metabolites of the synthetic cannabinoid JWH-018 in urine after controlled inhalation. J Pharm Biomed Anal 150:162–168

    Article  CAS  PubMed  Google Scholar 

  38. Truver MT, Watanabe S, Åstrand A et al (2020) 5F-MDMB-PICA metabolite identification and cannabinoid receptor activity. Drug Test Anal 12(1):127–135

    Article  CAS  PubMed  Google Scholar 

  39. Vikingsson S, Josefsson M, Gréen H (2015) Identification of AKB-48 and 5F-AKB-48 metabolites in Authentic human urine samples using human liver microsomes and time of flight mass spectrometry. J Anal Toxicol 39(6):426–435

    Article  CAS  PubMed  Google Scholar 

  40. Wagmann L, Frankenfeld F, Park YM et al (2020) How to study the metabolism of new psychoactive substances for the purpose of toxicological Screenings-A follow-up study comparing pooled human liver S9, HepaRG Cells, and Zebrafish Larvae. Front Chem 8:539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Watanabe S, Kuzhiumparambil U, Fu S (2018) Structural elucidation of metabolites of synthetic Cannabinoid UR-144 by Cunninghamella elegans using nuclear magnetic resonance (NMR) spectroscopy. AAPS J 20(2):42

    Article  PubMed  Google Scholar 

  42. Thomsen R, Nielsen LM, Holm NB et al (2015) Synthetic cannabimimetic agents metabolized by carboxylesterases. Drug Test Anal 7(7):565–576

    Article  CAS  PubMed  Google Scholar 

  43. Watanabe S, Wu X, Dahlen J, Konradsson P, Vikingsson S, Kronstrand R, Gréen H (2020) Metabolism of MMB022 and identification of dihydrodiol formation in vitro using synthesized standards. Drug Test Anal 12(10):1432–1441

    Article  CAS  PubMed  Google Scholar 

  44. Walle N, Nordmeier F, Doerr AA et al (2021) Comparison of in vitro and in vivo models for the elucidation of metabolic patterns of 7-azaindole-derived synthetic cannabinoids exemplified using cumyl-5F-P7AICA. Drug Test Anal 13(1):74–90

    Article  CAS  PubMed  Google Scholar 

  45. Kronstrand R, Åstrand A, Watanabe S et al (2021) Circumstances, postmortem findings, blood concentrations and metabolism in a series of Methoxyacetylfentanyl related deaths. J Anal Toxicol 45(8):760–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Åstrand A, Töreskog A, Watanabe S et al (2019) Correlations between metabolism and structural elements of the alicyclic fentanyl analogs cyclopropyl fentanyl, cyclobutyl fentanyl, cyclopentyl fentanyl, cyclohexyl fentanyl and 2,2,3,3-tetramethylcyclopropyl fentanyl studied by human hepatocytes and LC-QTOF-MS. Arch Toxicol 93(1):95–106

    Article  PubMed  Google Scholar 

  47. Vikingsson S, Rautio T, Wallgren J et al (2019) LC-QTOF-MS identification of major urinary Cyclopropylfentanyl metabolites using synthesized standards. J Anal Toxicol 43(8):607–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Watanabe S, Vikingsson S, Roman M et al (2017) In vitro and in vivo metabolite identification studies for the new synthetic opioids Acetylfentanyl, Acrylfentanyl, Furanylfentanyl, and 4-Fluoro-Isobutyrylfentanyl. AAPS J 19(4):1102–1122

    Article  CAS  PubMed  Google Scholar 

  49. Wallgren J, Vikingsson S, Rautio T et al (2021) Structure elucidation of urinary metabolites of Fentanyl and five Fentanyl analogs using LC-QTOF-MS, hepatocyte incubations and synthesized reference standards. J Anal Toxicol 44(9):993–1003

    Article  PubMed  Google Scholar 

  50. Manier SK, Wagmann L, Flockerzi V et al (2020) Toxicometabolomics of the new psychoactive substances α-PBP and α-PEP studied in HepaRG cell incubates by means of untargeted metabolomics revealed unexpected amino acid adducts. Arch Toxicol 94(6):2047–2059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Toennes SW, Schneider D, Pogoda W et al (2020) Excretion of 4-fluoroamphetamine and three metabolites in urine after controlled oral ingestion. J Pharm Biomed Anal 179:113008

    Article  CAS  PubMed  Google Scholar 

  52. Huppertz LM, Moosmann B, Auwärter V (2018) Flubromazolam – basic pharmacokinetic evaluation of a highly potent designer benzodiazepine. Drug Test Anal 10(1):206–211

    Article  CAS  PubMed  Google Scholar 

  53. Vikingsson S, Wohlfarth A, Andersson M et al (2017) Identifying metabolites of Meclonazepam by high-resolution mass spectrometry using human liver microsomes, hepatocytes, a mouse model, and authentic urine samples. AAPS J 19(3):736–742

    Article  CAS  PubMed  Google Scholar 

  54. Watanabe S, Vikingsson S, Åstrand A et al (2020) Metabolism of the benzodiazepines norflurazepam, flurazepam, fludiazepam and cinolazepam by human hepatocytes using high-resolution mass spectrometry and distinguishing their intake in authentic urine samples. Forensic Toxicol 38:79–94

    Article  Google Scholar 

  55. Wohlfarth A, Vikingsson S, Roman M et al (2017) Looking at flubromazolam metabolism from four different angles: metabolite profiling in human liver microsomes, human hepatocytes, mice and authentic human urine samples with liquid chromatography high-resolution mass spectrometry. Forensic Sci Int 274:55–63

    Article  CAS  PubMed  Google Scholar 

  56. Noble C, Mardal M, Bjerre Holm N et al (2017) In vitro studies on flubromazolam metabolism and detection of its metabolites in authentic forensic samples. Drug Test Anal 9(8):1182–1191

    Article  CAS  PubMed  Google Scholar 

  57. Corning Inc. Mammalian Liver Microsomes – Guidance for Use. https://certs-ecatalog.corning.com/life-sciences/product-descriptions/452161.pdf. Accessed 4 Aug 2021

  58. Moosmann B, Auwärter V (2018) Designer Benzodiazepines: another class of new psychoactive substances. Handb Exp Pharmacol 252:383–410

    Article  CAS  PubMed  Google Scholar 

  59. Vikingsson S, Johansson A, Wallgren J et al (2019) S25: Structural identification of metabolites of synthetic cannabinoids JWH-018, AM-2201, THJ-018, THJ-2201 and 5F-AKB-48 using in-house synthesized standards, hepatocytes & LC-QTOF-MS. Presented at the annual meeting of the Society of Forensic Toxicologists (SOFT), San Antonio, TX, 13–18 Oct 2019

    Google Scholar 

  60. Cashman JR, Park SB, Yang ZC, Wrighton SA, Jacob P 3rd, Benowitz NL (1992) Metabolism of nicotine by human liver microsomes: stereoselective formation of trans-nicotine N’-oxide. Chem Res Toxicol 5(5):639–646

    Article  CAS  PubMed  Google Scholar 

  61. Wohlfarth A, Toepfner N, Hermanns-Clausen M, Auwärter V (2011) Sensitive quantification of clozapine and its main metabolites norclozapine and clozapine-N-oxide in serum and urine using LC-MS/MS after simple liquid-liquid extraction work-up. Anal Bioanal Chem 400(3):737–746

    Article  CAS  PubMed  Google Scholar 

  62. Wen B, Nelson SD (2011) Common biotransformation reactions. In: Lee MS, Zhu M (eds) Mass spectrometry in drug metabolism and disposition: basic principles and applications. Wiley, Hoboken, pp 13–41

    Chapter  Google Scholar 

  63. Steuer AE, Brockbals L, Kraemer T (2019) Metabolomic strategies in biomarker research-new approach for indirect identification of drug consumption and sample manipulation in clinical and forensic toxicology? Front Chem 7:319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mollerup CB, Rasmussen BS, Johansen SS et al (2019) Retrospective analysis for valproate screening targets with liquid chromatography-high resolution mass spectrometry with positive electrospray ionization: an omics-based approach. Drug Test Anal 11(5):730–738

    Article  CAS  PubMed  Google Scholar 

  65. Citti C, Palazzoli F, Licata M et al (2018) Untargeted rat brain metabolomics after oral administration of a single high dose of cannabidiol. J Pharm Biomed Anal 161:1–11

    Article  CAS  PubMed  Google Scholar 

  66. Niessen WMA, Correa RAC (2017) Interpretation of MS-MS mass spectra of drugs and pesticides. Wiley, Hoboken

    Book  Google Scholar 

  67. Watanabe S, Vikingsson S, Åstrand A et al (2019) Biotransformation of the new synthetic Cannabinoid with an Alkene, MDMB-4en-PINACA, by human hepatocytes, human liver microsomes, and human urine and blood. AAPS J 22(1):13

    Google Scholar 

  68. Thaulow CH, Øiestad ÅML, Rogde S et al (2018) Can measurements of heroin metabolites in post-mortem matrices other than peripheral blood indicate if death was rapid or delayed? Forensic Sci Int 290:121–128

    Article  CAS  PubMed  Google Scholar 

  69. Forsman M, Nyström I, Roman M et al (2009) Urinary detection times and excretion patterns of flunitrazepam and its metabolites after a single oral dose. J Anal Toxicol 33(8):491–501

    Article  CAS  PubMed  Google Scholar 

  70. Kronstrand R, Nyström I, Andersson M et al (2008) Urinary detection times and metabolite/parent compound ratios after a single dose of buprenorphine. J Anal Toxicol 32(8):586–593

    Article  CAS  PubMed  Google Scholar 

  71. Brandon AM, Antonides LH, Riley J et al (2021) A systematic study of the in vitro pharmacokinetics and estimated human in vivo clearance of Indole and Indazole-3-Carboxamide synthetic Cannabinoid receptor agonists detected on the illicit drug market. Molecules 26(5):1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nielsen LM, Holm NB, Leth-Petersen S et al (2017) Characterization of the hepatic cytochrome P450 enzymes involved in the metabolism of 25I-NBOMe and 25I-NBOH. Drug Test Anal 9(5):671–679

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svante Vikingsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Vikingsson, S., Gréen, H., Kronstrand, R. (2023). High-Resolution Mass Spectrometry in Identification of New Analytes & Metabolites. In: Concheiro, M., Scheidweiler, K.B. (eds) Methods for Novel Psychoactive Substance Analysis . Methods in Pharmacology and Toxicology. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2605-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2605-4_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2604-7

  • Online ISBN: 978-1-0716-2605-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics