Skip to main content

An Optimized Stress Granule Detection Method: Investigation of UBQLN2 Effect on Stress Granule Formation

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2551))

Abstract

Stress granules (SGs) are cytosolic ribonucleoprotein granules that form via a liquid–liquid phase separation in response to environmental stresses such as heat, oxidative, and osmotic changes. Due to the condensation of low complexity, hydrophobic regions in core SG components in these highly dynamic granules, defects in SG maintenance and formation have been linked to toxic aggregate formation in neurodegenerative diseases such as amyotrophic lateral sclerosis and frontotemporal dementia. However, efforts to dissect mechanisms regulating SG formation and maintenance have been limited by methods of tracking protein–SG localization. Here we describe a method for detecting and quantifying recruitment of cytosolically enriched proteins to SGs by indirect immunofluorescence microscopy. Using this method, we tracked the transient recruitment of the cytosolically enriched ubiquitin-like protein, ubiquilin 2 (UBQLN2), and a number of other factors into SGs, demonstrating its utility (Alexander et al., Proc Natl Acad Sci U S A 115:E11485–E11494, 2018).

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Alexander EJ, Niaki AG, Zhang T et al (2018) Ubiquilin 2 modulates ALS/FTD-linked FUS–RNA complex dynamics and stress granule formation. Proc Natl Acad Sci U S A 115:E11485–E11494. https://doi.org/10.1073/pnas.1811997115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Anderson P, Kedersha N (2009) RNA granules: post-transcriptional and epigenetic modulators of gene expression. Nat Rev Mol Cell Biol 10:430–436. https://doi.org/10.1038/nrm2694

    Article  CAS  PubMed  Google Scholar 

  3. Boeynaems S, Alberti S, Fawzi NL et al (2018) Protein phase separation: a new phase in cell biology. Trends Cell Biol 28:420–435. https://doi.org/10.1016/j.tcb.2018.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Banani SF, Lee HO, Hyman AA et al (2017) Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol 18:285–298. https://doi.org/10.1038/nrm.2017.7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shin Y, Brangwynne CP (2017) Liquid phase condensation in cell physiology and disease. Science 357:eaaf4382. https://doi.org/10.1126/science.aaf4382

    Article  CAS  PubMed  Google Scholar 

  6. Molliex A, Temirov J, Lee J et al (2015) Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163:123–133. https://doi.org/10.1016/j.cell.2015.09.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lin Y, Protter DSW, Rosen MK et al (2015) Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. Mol Cell 60:208–219. https://doi.org/10.1016/j.molcel.2015.08.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Patel A, Lee HO, Jawerth L et al (2015) A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162:1066–1077. https://doi.org/10.1016/j.cell.2015.07.047

    Article  CAS  PubMed  Google Scholar 

  9. Zhang P, Fan B, Yang P et al (2019) Chronic optogenetic induction of stress granules is cytotoxic and reveals the evolution of ALS-FTD pathology. elife 8:e39578. https://doi.org/10.7554/eLife.39578

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mackenzie IR, Nicholson AM, Sarkar M et al (2017) TIA1 mutations in amyotrophic lateral sclerosis and frontotemporal dementia promote phase separation and Alter stress granule dynamics. Neuron 95:808–816.e9. https://doi.org/10.1016/j.neuron.2017.07.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kedersha N, Anderson P (2007) Mammalian stress granules and processing bodies. Methods Enzymol 431:61–81. https://doi.org/10.1016/S0076-6879(07)31005-7

    Article  CAS  PubMed  Google Scholar 

  12. Kedersha N, Tisdale S, Hickman T et al (2008) Real-time and quantitative imaging of mammalian stress granules and processing bodies. Methods Enzymol 448:521–552. https://doi.org/10.1016/S0076-6879(08)02626-8

    Article  CAS  PubMed  Google Scholar 

  13. Shin Y, Berry J, Pannucci N et al (2017) Spatiotemporal control of intracellular phase transitions using light-activated optoDroplets. Cell 168:159–171.e14. https://doi.org/10.1016/j.cell.2016.11.054

    Article  CAS  PubMed  Google Scholar 

  14. Jain S, Wheeler JR, Walters RW et al (2016) ATPase-modulated stress granules contain a diverse proteome and substructure. Cell 164:487–498. https://doi.org/10.1016/j.cell.2015.12.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Markmiller S, Soltanieh S, Server KL et al (2018) Context-dependent and disease-specific diversity in protein interactions within stress granules. Cell 172:590–604.e13. https://doi.org/10.1016/j.cell.2017.12.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Youn J-Y, Dunham WH, Hong SJ et al (2018) High-density proximity mapping reveals the subcellular organization of mRNA-associated granules and bodies. Mol Cell 69:517–532.e11. https://doi.org/10.1016/j.molcel.2017.12.020

    Article  CAS  PubMed  Google Scholar 

  17. Kosmacz M, Gorka M, Schmidt S et al (2019) Protein and metabolite composition of Arabidopsis stress granules. New Phytol 222:1420–1433. https://doi.org/10.1111/nph.15690

    Article  CAS  PubMed  Google Scholar 

  18. Jamur MC, Oliver C (2010) Cell fixatives for immunostaining. In: Oliver C, Jamur MC (eds) Immunocytochemical methods and protocols. Humana Press, Totowa, pp 55–61

    Chapter  Google Scholar 

  19. Jamur MC, Oliver C (2010) Permeabilization of cell membranes. In: Oliver C, Jamur MC (eds) Immunocytochemical methods and protocols. Humana Press, Totowa, pp 63–66

    Chapter  Google Scholar 

  20. Fey EG, Krochmalnic G, Penman S (1986) The nonchromatin substructures of the nucleus: the ribonucleoprotein (RNP)-containing and RNP-depleted matrices analyzed by sequential fractionation and resinless section electron microscopy. J Cell Biol 102:1654–1665

    Article  CAS  PubMed  Google Scholar 

  21. Guzzo CM, Berndsen CE, Zhu J et al (2012) RNF4-dependent hybrid SUMO-ubiquitin chains are signals for RAP80 and thereby mediate the recruitment of BRCA1 to sites of DNA damage. Sci Signal 5:ra88. https://doi.org/10.1126/scisignal.2003485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Itakura E, Zavodszky E, Shao S et al (2016) Ubiquilins chaperone and triage mitochondrial membrane proteins for degradation. Mol Cell 63:21–33. https://doi.org/10.1016/j.molcel.2016.05.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Möbius W, Cooper B, Kaufmann WA et al (2010) Electron microscopy of the mouse central nervous system. Methods Cell Biol 96:475–512. https://doi.org/10.1016/S0091-679X(10)96020-2

    Article  PubMed  Google Scholar 

  24. Karlsson U, Schultz RL (1965) Fixation of the central nervous system for electron microscopy by aldehyde perfusion: I. Preservation with aldehyde perfusates versus direct perfusion with osmium tetroxide with special reference to membranes and the extracellular space. J Ultrastruct Res 12:160–186. https://doi.org/10.1016/S0022-5320(65)80014-4

    Article  CAS  PubMed  Google Scholar 

  25. Aulas A, Fay MM, Szaflarski W et al (2017) Methods to classify cytoplasmic foci as mammalian stress granules. J Vis Exp JoVE:55656. https://doi.org/10.3791/55656

  26. Costes SV, Daelemans D, Cho EH et al (2004) Automatic and quantitative measurement of protein-protein colocalization in live cells. Biophys J 86:3993–4003. https://doi.org/10.1529/biophysj.103.038422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dunn KW, Kamocka MM, McDonald JH (2011) A practical guide to evaluating colocalization in biological microscopy. Am J Physiol Cell Physiol 300:C723–C742. https://doi.org/10.1152/ajpcell.00462.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bolte S, Cordelières FP (2006) A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224:213–232. https://doi.org/10.1111/j.1365-2818.2006.01706.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from NIH (NS074324, NS089616, NS110098). We thank the members of Wang lab for discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiou Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Alexander, E.J., Wang, J. (2023). An Optimized Stress Granule Detection Method: Investigation of UBQLN2 Effect on Stress Granule Formation. In: Cieplak, A.S. (eds) Protein Aggregation. Methods in Molecular Biology, vol 2551. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2597-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2597-2_33

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2596-5

  • Online ISBN: 978-1-0716-2597-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics