Skip to main content

Pharmacogenomics of Alzheimer’s Disease: Novel Strategies for Drug Utilization and Development

  • Protocol
Pharmacogenomics in Drug Discovery and Development

Abstract

Alzheimer’s disease (AD) is a priority health problem in developed countries with a high cost to society. Approximately 20% of direct costs are associated with pharmacological treatment. Over 90% of patients require multifactorial treatments, with risk of adverse drug reactions (ADRs) and drug-drug interactions (DDIs) for the treatment of concomitant diseases such as hypertension (>25%), obesity (>70%), diabetes mellitus type 2 (>25%), hypercholesterolemia (40%), hypertriglyceridemia (20%), metabolic syndrome (20%), hepatobiliary disorder (15%), endocrine/metabolic disorders (>20%), cardiovascular disorder (40%), cerebrovascular disorder (60–90%), neuropsychiatric disorders (60–90%), and cancer (10%).

For the past decades, pharmacological studies in search of potential treatments for AD focused on the following categories: neurotransmitter enhancers (11.38%), multitarget drugs (2.45%), anti-amyloid agents (13.30%), anti-tau agents (2.03%), natural products and derivatives (25.58%), novel synthetic drugs (8.13%), novel targets (5.66%), repository drugs (11.77%), anti-inflammatory drugs (1.20%), neuroprotective peptides (1.25%), stem cell therapy (1.85%), nanocarriers/nanotherapeutics (1.52%), and other compounds (<1%).

Pharmacogenetic studies have shown that the therapeutic response to drugs in AD is genotype-specific in close association with the gene clusters that constitute the pharmacogenetic machinery (pathogenic, mechanistic, metabolic, transporter , pleiotropic genes) under the regulatory control of epigenetic mechanisms (DNA methylation, histone/chromatin remodeling, microRNA regulation). Most AD patients (>60%) are carriers of over ten pathogenic genes . The genes that most frequently (>50%) accumulate pathogenic variants in the same AD case are A2M (54.38%), ACE (78.94%), BIN1 (57.89%), CLU (63.15%), CPZ (63.15%), LHFPL6 (52.63%), MS4A4E (50.87%), MS4A6A (63.15%), PICALM (54.38%), PRNP (80.7059), and PSEN1 (77.19%). There is also an accumulation of 15 to 26 defective pharmagenes in approximately 85% of AD patients. About 50% of AD patients are carriers of at least 20 mutant pharmagenes, and over 80% are deficient metabolizers for the most common drugs, which are metabolized via the CYP2D6 , CYP2C9, CYP2C19, and CYP3A4/5 enzymes.

The implementation of pharmacogenetics can help optimize drug development and the limited therapeutic resources available to treat AD , and personalize the use of anti-dementia drugs in combination with other medications for the treatment of concomitant disorders .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cantarero-Prieto D, Leon PL, Blazquez-Fernandez C, Sanchez-Juan P, Sarabia-Cobo C (2020) The economic cost of dementia: a systematic review. Dementia 19:2637–2657

    Article  PubMed  Google Scholar 

  2. Sado M, Ninomiya A, Shikimoto R, Ikeda B, Baba T, Yoshimura K, Mimura M (2018) The estimated cost of dementia in Japan, the most aged society in the world. PLoS One 13:e0206508

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bachman DL, Wolf PA, Linn R, Knoefel JE, Belanger A, D’Agostino RB, White LR (1992) Prevalence of dementia and probable senile dementia of the Alzheimer type in the Framingham study. Neurology 42:115–119

    Article  CAS  PubMed  Google Scholar 

  4. Cacabelos R, Fernández-Novoa L, Lombardi V, Kubota Y, Takeda M (2005) Molecular genetics of Alzheimer’s disease and aging. Methods Find Exp Clin Pharmacol 27:1–573

    PubMed  Google Scholar 

  5. Masters CL, Bateman R, Blennow K, Rowe CC, Sperling RA, Cummings JL (2015) Alzheimer’s disease. Nat Rev Dis Primers 1:15056

    Article  PubMed  Google Scholar 

  6. Arvanitakis Z, Shah RC, Bennett DA (2019) Diagnosis and management of dementia: review. JAMA 322:1589–1599

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hersi M, Irvine B, Gupta P, Gomes J, Birkett N, Krewski D (2017) Risk factors associated with the onset and progression of Alzheimer’s disease: a systematic review of the evidence. Neurotoxicology 61:143–187

    Article  PubMed  Google Scholar 

  8. Dubois B, Hampel H, Feldman HH, Scheltens P, Aisen P, Andrieu S, Bakardjian H et al (2016) Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria. Alzheimers Dement 12(3):292–323

    Article  PubMed  PubMed Central  Google Scholar 

  9. Busche MA, Hyman BT (2020) Synergy between amyloid-β and tau in Alzheimer’s disease. Nat Neurosci 23(10):1183–1193

    Article  CAS  PubMed  Google Scholar 

  10. Cacabelos R, Cacabelos P, Torrellas C, Tellado I, Carril JC (2014) Pharmacogenomics of Alzheimer’s disease: novel therapeutic strategies for drug development. Methods Mol Biol 1175:323–556

    Article  PubMed  Google Scholar 

  11. Cacabelos R, Carril JC, Cacabelos P, Teijido O, Goldgaber D (2016) Pharmacogenomics of Alzheimer’s disease: genetic determinants of phenotypic variation and therapeutic outcome. J Genom Med Pharmacogenom 1:151–209

    Google Scholar 

  12. Cacabelos R, Carril JC, Cacabelos N, Kazantsev AG, Vostrov AV, Corzo L et al (2019) Sirtuins in Alzheimer’s disease: SIRT2-related GenoPhenotypes and implications for PharmacoEpiGenetics. Int J Mol Sci 20:1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cacabelos R (2018) Population-level pharmacogenomics for precision drug development in dementia. Expert Rev Precision Med Drug Dev 3:163–188

    Article  Google Scholar 

  14. Cacabelos R (2020) Pharmacogenomics of cognitive dysfunction and neuropsychiatric disorders in dementia. Int J Mol Sci 21:3059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Matej R, Tesar A, Rusina R (2019) Alzheimer’s disease and other neurodegenerative dementias in comorbidity: a clinical and neuropathological overview. Clin Biochem 73:26–31

    Article  CAS  PubMed  Google Scholar 

  16. Cacabelos R, Cacabelos N, Carril JC (2019) The role of pharmacogenomics in adverse drug reactions. Expert Rev Clin Pharmacol 12:407–442

    Article  CAS  PubMed  Google Scholar 

  17. Cacabelos R, Goldgaber D, Vostrov A, Matsuki H, Torrellas C, Corzo D et al (2014) APOE-TOMM40 in the pharmacogenomics of dementia. J Pharmacogenom Pharmacoproteom 5:135

    Google Scholar 

  18. Cacabelos R (2020) Pharmacogenomic of drugs to treat brain disorders. Expert Rev Precision Med Drug Develop 5:181–234

    Article  Google Scholar 

  19. Cacabelos R, Carril JC, Corzo L, Fernandez-Novoa L, Pego R, Cacabelos N et al (2021) Influence of pathogenic and metabolic genes on the pharmacogenetics of mood disorders in Alzheimer’s disease. Pharmaceuticals 14:366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bature F, Guinn BA, Pang D, Pappas Y (2017) Signs and symptoms preceding the diagnosis of Alzheimer’s disease: a systematic scoping review of literature from 1937 to 2016. BMJ Open 7:015746

    Article  Google Scholar 

  21. Linnemann C, Lang UE (2020) Pathways connecting late-life depression and dementia. Front Pharmacol 11:279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bennett S, Thomas AJ (2014) Depression and dementia: cause, consequence or coincidence? Maturitas 79:184–190

    Article  PubMed  Google Scholar 

  23. Gutzmann H, Qazi A (2015) Depression associated with dementia. Z Gerontol Geriatr 48(4):305–311

    Article  CAS  PubMed  Google Scholar 

  24. Baruch N, Burgess J, Pillai M, Allan CL (2019) Treatment for depression comorbid with dementia. Evid Based Ment Health 22:167–171

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bingham KS, Flint AJ, Mulsant BH (2019) Management of late-life depression in the context of cognitive impairment: a review of the recent literature. Curr Psychiatry Rep 21:74

    Article  PubMed  Google Scholar 

  26. Kratz T (2017) The diagnosis and treatment of behavioral disorders in dementia. Dtsch Arztebl Int 114:447–454

    PubMed  PubMed Central  Google Scholar 

  27. Aarsland D (2020) Epidemiology and pathophysiology of dementia-related psychosis. J Clin Psychiatry 81:AD19038BR1C

    Google Scholar 

  28. Matsuda H (2016) MRI morphometry in Alzheimer’s disease. Ageing Res Rev 30:17–24

    Article  PubMed  Google Scholar 

  29. Chen C, Homma A, Mok VC, Krishnamoorthy E, Alladi S, Meguro K et al (2016) Alzheimer’s disease with cerebrovascular disease: current status in the Asia-Pacific region. J Intern Med 280:359–374

    Article  CAS  PubMed  Google Scholar 

  30. Chandra A, Dervenoulas G, Politis M, Alzheimer’s Disease Neuroimaging Initiative (2019) Magnetic resonance imaging in Alzheimer’s disease and mild cognitive impairment. J Neurol 266:1293–1302

    Article  PubMed  Google Scholar 

  31. Whitwell JL (2018) Alzheimer’s disease neuroimaging. Curr Opin Neurol 31:396–404

    Article  PubMed  Google Scholar 

  32. Barbe C, Jolly D, Morrone I, Wolak-Thierry A, Dramé M, Novella JL et al (2018) Factors associated with quality of life in patients with Alzheimer’s disease. BMC Geriatr 18:159

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ettcheto M, Olloquequi J, Sánchez-López E, Busquets O, Cano A, Manzine PR et al (2020) Benzodiazepines and related drugs as a risk factor in Alzheimer’s disease dementia. Front Aging Neurosci 11:344

    Article  PubMed  PubMed Central  Google Scholar 

  34. Vidoni ED, Kamat A, Gahan WP, Ourso V, Woodard K, Kerwin DR et al (2020) Baseline prevalence of polypharmacy in older hypertensive study subjects with elevated dementia risk: findings from the Risk Reduction for Alzheimer’s Disease Study (rrAD). J Alzheimers Dis 77:175–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Andin U, Passant U, Gustafson L, Englund E (2007) Alzheimer’s disease (AD) with and without white matter pathology-clinical identification of concurrent cardiovascular disorders. Arch Gerontol Geriatr 44:277–286

    Article  PubMed  Google Scholar 

  36. Ibrahim B, Suppiah S, Piersson AD, Razali RM, Mohamad M, Abu Hassan H et al (2021) Cardiovascular risk factors of Alzheimer’s disease and other neurocognitive disorders in Malaysia. Med J Malaysia 76(3):291–297

    CAS  PubMed  Google Scholar 

  37. Cacabelos R (2004) Genomic characterization of Alzheimer’s disease and genotype-related phenotypic analysis of biological markers in dementia. Pharmacogenomics 5:1049–1105

    Article  CAS  PubMed  Google Scholar 

  38. Cacabelos R, Meyyazhagan A, Carril JC, Cacabelos P, Teijido O (2018) Pharmacogenetics of vascular risk factors in Alzheimer’s disease. J Personalized Med 8:3

    Article  Google Scholar 

  39. Cacabelos R, Fernández-Novoa L, Corzo L, Pichel V, Lombardi V, Kubota Y (2004) Genomics and phenotypic profiles in dementia: implications for pharmacological treatment. Methods Find Exp Clin Pharmacol 26:421–444

    Article  CAS  PubMed  Google Scholar 

  40. Contois JH, Anamani DE, Tsongalis GJ (1996) The underlying molecular mechanism of apolipoprotein E polymorphism: relationships to lipid disorders, cardiovascular disease, and Alzheimer’s disease. Clin Lab Med 16:105–123

    Article  CAS  PubMed  Google Scholar 

  41. Cacabelos R, Fernández-Novoa L, Lombardi V, Corzo L, Pichel V, Kubota Y (2003) Cerebrovascular risk factors in Alzheimer’s disease: brain hemodynamics and pharmacogenomic implications. Neurol Res 25:567–580

    Article  CAS  PubMed  Google Scholar 

  42. Loera-Valencia R, Goikolea J, Parrado-Fernandez C, Merino-Serrais P, Maioli S (2019) Alterations in cholesterol metabolism as a risk factor for developing Alzheimer’s disease: potential novel targets for treatment. J Steroid Biochem Mol Biol 190:104–114

    Article  CAS  PubMed  Google Scholar 

  43. Jeong W, Lee H, Cho S, Seo J (2019) ApoE4-induced cholesterol dysregulation and its brain cell type-specific implications in the pathogenesis of Alzheimer’s disease. Mol Cells 42:739–746

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Di Paolo G, Kim TW (2011) Linking lipids to Alzheimer’s disease: cholesterol and beyond. Nat Rev Neurosci 12:284–296

    Article  PubMed  PubMed Central  Google Scholar 

  45. Pugazhenthi S, Qin L, Reddy PH (2017) Common neurodegenerative pathways in obesity, diabetes, and Alzheimer’s disease. Biochim Biophys Acta Mol basis Dis 1863:1037–1045

    Article  CAS  PubMed  Google Scholar 

  46. Chornenkyy Y, Wang WX, Wei A, Nelson PT (2019) Alzheimer’s disease and type 2 diabetes mellitus are distinct diseases with potential overlapping metabolic dysfunction upstream of observed cognitive decline. Brain Pathol 29:3–17

    Article  PubMed  Google Scholar 

  47. Baglietto-Vargas D, Shi J, Yaeger DM, Ager R, LaFerla FM (2016) Diabetes and Alzheimer’s disease crosstalk. Neurosci Biobehav Rev 64:272–287

    Article  CAS  PubMed  Google Scholar 

  48. Cacabelos R (2020) Pharmacogenetic considerations when prescribing cholinesterase inhibitors for the treatment of Alzheimer’s disease. Expert Opin Drug Metab Toxicol 16:673–701

    Article  CAS  PubMed  Google Scholar 

  49. Cacabelos R (2007) Molecular pathology and pharmacogenomics in Alzheimer’s disease: polygenic-related effects of multifactorial treatments on cognition, anxiety, and depression. Methods Find Exp Clin Pharmacol 29:1–91

    CAS  PubMed  Google Scholar 

  50. Cacabelos R (2008) Pharmacogenomics in Alzheimer’s disease. Methods Mol Biol 448:213–357

    Article  CAS  PubMed  Google Scholar 

  51. Cacabelos R, Fernández-Novoa L, Martínez-Bouza R, McKay A, Carril JC, Lombardi V et al (2010) Future trends in the pharmacogenomics of brain disorders and dementia: influence of APOE and CYP2D6 variants. Pharmaceuticals 3:3040–3100

    Article  CAS  PubMed Central  Google Scholar 

  52. Cacabelos R (2018) Have there been improvement in Alzheimer’s disease drug discovery over the past 5 years? Expert Opin Drug Discovery 13:523–538

    Article  CAS  Google Scholar 

  53. Maramai S, Benchekroun M, Gabr MT, Yahiaoui (2020) Multitarget therapeutic strategies for Alzheimer’s disease: review on emerging target combinations. Biomed Res Int 2020:5120230

    Article  PubMed  PubMed Central  Google Scholar 

  54. Cacabelos R (2020) How plausible is an Alzheimer’s disease vaccine? Expert Opin Drug Discovery 15:1–6

    Article  CAS  Google Scholar 

  55. Cummings J, Lee G, Ritter A, Sabbagh M, Zhong K (2020) Alzheimer’s disease drug development pipeline: 2020. Alzheimers Dement 6:e12050

    Article  Google Scholar 

  56. Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T et al (1999) Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400(6740):173–177

    Article  CAS  PubMed  Google Scholar 

  57. Foroutan N, Hopkins RB, Tarride JE, Florez ID, Levine M (2019) Safety and efficacy of active and passive immunotherapy in mild-to-moderate Alzheimer’s disease: a systematic review and network meta-analysis. Clin Invest Med 42:53–65

    Article  Google Scholar 

  58. Janus C, Pearson J, McLaurin J, Mathews PM, Jiang Y, Schmidt SD et al (2000) A beta peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease. Nature 408:979–982

    Article  CAS  PubMed  Google Scholar 

  59. Herline K, Drummond E, Wisniewski T (2018) Recent advancements toward therapeutic vaccines against Alzheimer’s disease. Expert Rev Vaccines 17:707–721

    Article  CAS  PubMed  Google Scholar 

  60. Novak P, Zilka N, Zilkova M, Kovacech B, Skrabana R, Ondrus M et al (2019) AADvac1, an active immunotherapy for Alzheimer’s disease and non Alzheimer tauopathies: an overview of preclinical and clinical development. J Prev Alzheimers Dis 6:63–69

    CAS  PubMed  Google Scholar 

  61. Hoskin JL, Sabbagh MN, Al-Hasan Y, Decourt B (2019) Tau immunotherapies for Alzheimer’s disease. Expert Opin Investig Drugs 28:545–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Carrera I, Fernandez-Novoa L, Aliev G, Vigo C, Cacabelos R (2016) Validating immunotherapy in Alzheimer’s disease: the EB101 vaccine. Curr Pharm Des 22:849–858

    Article  CAS  PubMed  Google Scholar 

  63. Zhang HY, Zhu K, Meng Y, Ding L, Wang JC, Yin WC et al (2018) Reduction of amyloid beta by Aβ3-10-KLH vaccine also decreases tau pathology in 3×Tg-AD mice. Brain Res Bull 142:233–240

    Article  PubMed  Google Scholar 

  64. Rosenberg RN, Fu M, Lambracht-Washington D (2018) Active full-length DNA Aβ42 immunization in 3xTg-AD mice reduces not only amyloid deposition but also tau pathology. Alzheimers Res Ther 10:115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Oddo S, Billings L, Kesslak JP, Cribbs DH, LaFerla FM (2004) Abeta immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome. Neuron 43:321–332

    Article  CAS  PubMed  Google Scholar 

  66. Lalli G, Schott JM, Hardy J, De Strooper B (2021) Aducanumab: a new phase in therapeutic development for Alzheimer’s disease? EMBO Mol Med 13:e14781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mukhopadhyay S, Banerjee D (2021) A primer on the evolution of aducanumab: the first antibody approved for treatment of Alzheimer’s disease. J Alzheimers 83:1537–1552

    Article  CAS  Google Scholar 

  68. Knopman DS, Jones DT, Greicius MD (2021) Failure to demonstrate efficacy of aducanumab: An analysis of the EMERGE and ENGAGE trials as reported by Biogen, December 2019. Alzheimers Dement 17:696–701

    Article  PubMed  Google Scholar 

  69. Sevigny J, Chiao P, Bussière T, Weinreb PH, Williams L, Maier M et al (2016) The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 537:50–56

    Article  CAS  PubMed  Google Scholar 

  70. Ferrero J, Williams L, Stella H, Leitermann K, Mikulskis A, O’Gorman J et al (2016) First-in-human, double-blind, placebo-controlled, single-dose escalation study of aducanumab (BIIB037) in mild-to-moderate Alzheimer’s disease. Alzheimers Dement 2:169–176

    Article  Google Scholar 

  71. Tolar M, Abushakra S, Hey JA, Porsteinsson A, Sabbagh M (2020) Aducanumab, gantenerumab, BAN2401, and ALZ-801-the first wave of amyloid-targeting drugs for Alzheimer’s disease with potential for near term approval. Alzheimers Res Ther 12:95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. VandeVrede L, Gibbs DM, Koestler M, La Joie R, Ljubenkov PA, Provost K et al (2020) Symptomatic amyloid-related imaging abnormalities in an APOE ε4/ε4 patient treated with aducanumab. Alzheimers Dement 12:e12101

    Google Scholar 

  73. Cacabelos R, Carril JC, Sanmartín A, Cacabelos P. Pharmacoepigenetic processors: epigenetic drugs, drug resistance, toxicoepigenetics, and nutriepigenetics. In: Cacabelos R (ed) (2019) Pharmacoepigenetics. Academic Press/Elsevier, Oxford, UK, pp. 191–424

    Chapter  Google Scholar 

  74. Kozyra M, Ingelman-Sundberg M, Lauschke VM (2017) Rare genetic variants in cellular transporters, metabolic enzymes, and nuclear receptors can be important determinants of interindividual differences in drug response. Genet Med 19:20–29

    Article  CAS  PubMed  Google Scholar 

  75. Zhou ZW, Chen XW, Sneed KB, Yang YX, Zhang X, He ZH et al (2015) Clinical association between pharmacogenomics and adverse drug reactions. Drugs 75:589–631

    Article  CAS  PubMed  Google Scholar 

  76. Cacabelos R (2018) Pleiotropy and promiscuity in pharmacogenomics for the treatment of Alzheimer’s disease and related risk factors. Future Neurol 13:71–86

    Google Scholar 

  77. Cacabelos R, Teijido O (2018) Epigenetic drug discovery for Alzheimer’s disease. In: Moskalev A, Vaiserman A (eds) Epigenetics of aging and longevity. Elsevier/Academic Press, London, pp 453–495

    Chapter  Google Scholar 

  78. Cacabelos R, Martínez-Bouza R, Carril JC, Fernandez-Novoa L, Lombardi V, Carrera I et al (2012) Genomics and pharmacogenomics of brain disorders. Curr Pharm Biotechnol 13:674–725

    Article  CAS  PubMed  Google Scholar 

  79. Cacabelos R, Martínez-Bouza R (2011) Genomics and pharmacogenomics of dementia. CNS Neurosci Ther 17:566–576

    Article  CAS  PubMed  Google Scholar 

  80. Cai Y, An SS, Kim S (2015) Mutations in presenilin 2 and its implications in Alzheimer’s disease and other dementia-associated disorders. Clin Interv Aging 10:1163–1172

    PubMed  PubMed Central  Google Scholar 

  81. Kelleher RJ, Shen J (2017) Presenilin-1 mutations and Alzheimer’s disease. Proc Natl Acad Sci U S A 114:629–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tcw J, Goate AM (2017) Genetics of β-amyloid precursor protein in Alzheimer’s disease. Cold Spring Harb Perspect Med 7:a024539

    Article  PubMed  PubMed Central  Google Scholar 

  83. Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8:595–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tolar M, Abushakra S, Sabbagh M (2020) The path forward in Alzheimer’s disease therapeutics: reevaluating the amyloid cascade hypothesis. Alzheimers Dement 16:1553–1560

    Article  PubMed  Google Scholar 

  85. Giau VV, Bagyinszky E, Yang Y, Youn YC, An SSA, Kim SY (2019) Genetic analyses of early-onset Alzheimer’s disease using next generation sequencing. Sci Rep 9:8368

    Article  PubMed  PubMed Central  Google Scholar 

  86. Van Cauwenberghe C, Van Broeckhoven C, Sleegers K (2016) The genetic landscape of Alzheimer disease: clinical implications and perspectives. Genet Med 18:421–430

    Article  PubMed  Google Scholar 

  87. Bertram L (2016) Next generation sequencing in Alzheimer’s disease. Methods Mol Biol 1303:281–297

    Article  PubMed  Google Scholar 

  88. Zhu JB, Tan CC, Tan L, Yu JT (2017) State of play in Alzheimer’s disease genetics. J Alzheimers Dis 58:631–659

    Article  CAS  PubMed  Google Scholar 

  89. Karch CM, Goate AM (2015) Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biol Psychiatry 77:43–51

    Article  CAS  PubMed  Google Scholar 

  90. Cacabelos R, Torrellas C, Teijido O, Carril JC (2016) Pharmacogenetic considerations in the treatment of Alzheimer’s disease. Pharmacogenomics 17:1041–1074

    Article  CAS  PubMed  Google Scholar 

  91. Cacabelos R (2012) Pharmacogenomics of central nervous system (CNS) drugs. Drug Dev Res 73:461–476

    Article  CAS  Google Scholar 

  92. Cacabelos R, Takeda M (2006) Pharmacogenomics, nutrigenomics and future therapeutics in Alzheimer’s disease. Drugs Future 3:5–146

    Google Scholar 

  93. Cacabelos R (2001) Psychogeriatric research: a conceptual introduction to aging and geriatric neuroscience. Psychogeriatrics 1:158–188

    Article  Google Scholar 

  94. Sabbagh MN, Malek-Ahmadi M, Dugger BN, Lee K, Sue LI, Serrano G et al (2013) The influence of Apolipoprotein E genotype on regional pathology in Alzheimer’s disease. BMC Neurol 13:44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kennedy RE, Cutter GR, Schneider LS (2014) Effect of APOE genotype status on targeted clinical trials outcomes and efficiency in dementia and mild cognitive impairment resulting from Alzheimer’s disease. Alzheimers Dement 10:349–359

    Article  PubMed  Google Scholar 

  96. Reiman EM, Arboleda-Velasquez JF, Quiroz YT, Huentelman MJ, Beach TG, Caselli RJ et al (2020) Exceptionally low likelihood of Alzheimer’s dementia in APOE2 homozygotes from a 5,000-person neuropathological study. Nat Commun 11:667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Shapira M, Tur-Kaspa I, Bosgraaf L, Livni N, Grant AD, Grisaru D et al (2000) A transcription-activating polymorphism in the ACHE promoter associated with acute sensitivity to anti-acetylcholinesterases. Hum Mol Genet 9:1273–1281

    Google Scholar 

  98. Lane R, Feldman HH, Meyer J, He Y, Ferris SH, Nordberg A et al (2008) Synergistic effect of apolipoprotein E epsilon4 and butyrylcholinesterase K-variant on progression from mild cognitive impairment to Alzheimer’s disease. Pharmacogenet Genomics 18:289–928

    Article  CAS  PubMed  Google Scholar 

  99. Cuddy LK, Seah C, Pasternak SH, Rylett RJ (2017) Amino-terminal β-amyloid antibody blocks β-amyloid-mediated inhibition of the high-affinity choline transporter CHT. Front Mol Neurosci 10:361

    Article  PubMed  PubMed Central  Google Scholar 

  100. Payette DJ, Xie J, Guo Q (2007) Reduction in CHT1-mediated choline uptake in primary neurons from presenilin-1 M146V mutant knock-in mice. Brain Res 1135:12–21

    Article  CAS  PubMed  Google Scholar 

  101. Wang Y, Zhou Z, Tan H, Zhu S, Wang Y, Sun Y et al (2017) Nitrosylation of vesicular transporters in brain of amyloid precursor protein/presenilin 1 double transgenic mice. J Alzheimers Dis 55:1683–1692

    Article  CAS  PubMed  Google Scholar 

  102. Nagy PM, Aubert I (2012) Overexpression of the vesicular acetylcholine transporter increased acetylcholine release in the hippocampus. Neuroscience 218:1–11

    Article  CAS  PubMed  Google Scholar 

  103. Kolisnyk B, Al-Onaizi MA, Xu J, Parfitt GM, Ostapchenko VG, Hanin G et al (2016) Cholinergic regulation of hnRNPA2/B1 translation by M1 muscarinic receptors. J Neurosci 36:6287–6296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Dolejší E, Liraz O, Rudajev V, Zimcik P, Dolezal V, Michaelson DM (2016) Apolipoprotein E4 reduces evoked hippocampal acetylcholine release in adult mice. J Neurochem 136:503–509

    Article  PubMed  Google Scholar 

  105. Albin RL, Bohnen NI, Muller MLTM, Dauer W, Sarter M, Frey KA et al (2018) Regional vesicular acetylcholine transporter distribution in human brain: a [18 F]fluoroethoxybenzovesamicol positron emission tomography study. J Comp Neurol 526:2884–2897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wallace TL, Bertrand D (2013) Importance of the nicotinic acetylcholine receptor system in the prefrontal cortex. Biochem Pharmacol 85:1713–1720

    Article  CAS  PubMed  Google Scholar 

  107. Ma KG, Qian YH (2019) Alpha 7 nicotinic acetylcholine receptor and its effects on Alzheimer’s disease. Neuropeptides 73:96–106

    Article  CAS  PubMed  Google Scholar 

  108. Sadigh-Eteghad S, Talebi M, Mahmoudi J, Babri S, Shanehbandi D (2015) Selective activation of α7 nicotinic acetylcholine receptor by PHA-543613 improves Aβ25-35-mediated cognitive deficits in mice. Neuroscience 298:81–93

    Article  CAS  PubMed  Google Scholar 

  109. Cacabelos R, Teijido O, Carril JC (2019) Pharmacoepigenetic processors: epigenetic drugs, drug resistance, toxicoepigenetics and nutriepigenenetics. In: Cacabelos R (ed) Pharmacoepigenetics. Elsevier/Academic Press, Oxford

    Google Scholar 

  110. Tang X, Chen S (2015) Epigenetic regulation of cytochrome P450 enzymes and clinical implication. Curr Drug Metab 16:86–96

    Article  CAS  PubMed  Google Scholar 

  111. Habano W, Kawamura K, Iizuka N, Terashima J, Sugai T, Ozawa S (2015) Analysis of DNA methylation landscape reveals the roles of DNA methylation in the regulation of drug metabolizing enzymes. Clin Epigenetics 7:105

    Article  PubMed  PubMed Central  Google Scholar 

  112. Cacabelos R, Torrellas C, Carrera I (2015) Opportunities in pharmacogenomics for the treatment of Alzheimer’s disease. Future Neurol 10:229–252

    Article  CAS  Google Scholar 

  113. Chu SK, Yang HC (2017) Interethnic DNA methylation difference and its implications in pharmacoepigenetics. Epigenomics 9:1437–1454

    Article  CAS  PubMed  Google Scholar 

  114. Lee IS, Kim D (2011) Polymorphic metabolism by functional alterations of human cytochrome P450 enzymes. Arch Pharm Res 34:1799–1816

    Article  CAS  PubMed  Google Scholar 

  115. Xie HG, Kim RB, Wood AJ, Stein CM (2001) Molecular basis of ethnic differences in drug disposition and response. Annu Rev Pharmacol Toxicol 41:815–850

    Article  CAS  PubMed  Google Scholar 

  116. Isaza C, Henao J, Ramírez E (2005) Polymorphic variants of the beta-2-adrenergic receptor (ADRB2) gene and ADRB2-related propanolol-induced dyslipidemia in the Colombian population. Methods Find Exp Clin Pharmacol 27:237–244

    Article  CAS  PubMed  Google Scholar 

  117. Taskin B, Percin FE, Ergun MA (2016) Investigation of CYP2D6 gene polymorphisms in Turkish population. Psychopharmacol Bull 46:67–72

    PubMed  PubMed Central  Google Scholar 

  118. Cacabelos R (ed) (2012) World guide for drug use and pharmacogenomics. EuroEspes Publishing, A Corunna

    Google Scholar 

  119. Apellániz-Ruiz M, Inglada-Pérez L, Naranjo ME, Sánchez L, Mancikova V, Currás-Freire et al (2015) High frequency and founder effect of the CYP3A4*20 loss-of-function allele in the Spanish population classifies CYP3A4 as a polymorphic enzyme. Pharmacogenomics J 15:288–292

    Article  PubMed  Google Scholar 

  120. Backman JT, Filppula AM, Niemi M, Neuvonen PJ (2016) Role of cytochrome P450 2C8 in drug metabolism and interactions. Pharmacol Rev 68:168–241

    Article  PubMed  Google Scholar 

  121. Zhou Y, Lauschke VM (2018) Comprehensive overview of the pharmacogenetic diversity in Ashkenazi Jews. J Med Genet 55:617–627

    Article  CAS  PubMed  Google Scholar 

  122. Tucci JD, Pumuye PP, Helsby NA, Barrat DT, Pokeya PP, Hombhanje D et al (2018) Pharmacogenomics in Papua New Guineans: unique profiles and implications for enhancing drug efficacy while improving drug safety. Pharmacogenet Genomics 28:153–164

    Article  CAS  PubMed  Google Scholar 

  123. Rajman I, Knapp L, Morgan T, Masimirembwa C (2017) African genetic diversity: implications for cytochrome P450-mediated drug metabolism and drug development. EBioMedicine 17:67–74

    Article  PubMed  PubMed Central  Google Scholar 

  124. Gaio V, Picanço I, Nunes B, Fernandes A, Mendonca F, Horta-Correia F et al (2015) Pharmacogenetic profile of a South Portuguese population: results from the pilot study of the European Health Examination Survey in Portugal. Public Health Genomics 18:139–150

    Article  PubMed  Google Scholar 

  125. Marquez B, Van Bambeke F (2011) ABC multidrug transporters: target for modulation of drug pharmacokinetics and drug-drug interactions. Curr Drug Targets 12:600–620

    Article  CAS  PubMed  Google Scholar 

  126. Cacabelos R, López-Muñoz F (2014) The ABCB1 transporter in Alzheimer’s disease. Clin Exp Pharmacol 4:e128

    Article  Google Scholar 

  127. Elali A, Rivest S (2013) The role of ABCB1 and ABCA1 in beta-amyloid clearance at the neurovascular unit in Alzheimer’s disease. Front Physiol 4:45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Cascorbi I, Flüh C, Remmler C, Haenisch S, Faltraco F, Grumbt M et al (2013) Association of ATP-binding cassette transporter variants with the risk of Alzheimer’s disease. Pharmacogenomics 14:485–494

    Article  CAS  PubMed  Google Scholar 

  129. Fehér Á, Juhász A, László A, Pákáski M, Kálmán J, Janka Z (2013) Association between the ABCG2 C421A polymorphism and Alzheimer’s disease. Neurosci Lett 550:51–54

    Article  PubMed  Google Scholar 

  130. Chai AB, Leung GKF, Callaghan R, Gelissen IC (2020) P-glycoprotein: a role in the export of amyloid-β in Alzheimer’s disease? FEBS J 287:612–625

    Article  CAS  PubMed  Google Scholar 

  131. Alharbi HA, Alcorn J, Al-Mousa A, Giesy JP (2017) Toxicokinetics and toxicodynamics of chlorpyrifos is altered in embryos of Japanese medaka exposed to oil sands process-affected water: evidence for inhibition of P-glycoprotein. J Appl Toxicol 37:591–601

    Article  CAS  PubMed  Google Scholar 

  132. Bruckmann S, Brenn A, Grube M, Niedrig K, Holtfreter S, von Bohlen, Halbach O et al (2017) Lack of P-glycoprotein results in impairment of removal of beta-amyloid and increased intraparenchymal cerebral amyloid angiopathy after active immunization in a transgenic mouse model of Alzheimer’s disease. Curr Alzheimer Res 14:656–667

    Article  CAS  PubMed  Google Scholar 

  133. Szablewski L (2017) Glucose transporters in brain: in health and in Alzheimer’s disease. J Alzheimers Dis 55:1307–1320

    Article  CAS  PubMed  Google Scholar 

  134. Alam MA, Datta PK (2019) Epigenetic regulation of excitatory amino acid transporter 2 in neurological disorders. Front Pharmacol 10:1510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Sharma A, Kazim SF, Larson CS, Ramakrishnan A, Gray JD, McEwen BS et al (2019) Divergent roles of astrocytic versus neuronal EAAT2 deficiency on cognition and overlap with aging and Alzheimer’s molecular signatures. Proc Natl Acad Sci U S A 116:21800–21811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Pang R, Wang X, Du Z, Pei F, Li Z, Sun L et al (2020) The distribution and density of monocarboxylate transporter 2 in cerebral cortex, hippocampus and cerebellum of wild-type mice. J Anat 236:370–377

    Article  CAS  PubMed  Google Scholar 

  137. Ugbode C, Hu Y, Whalley B, Peers C, Rattray M, Dallas ML (2017) Astrocytic transporters in Alzheimer’s disease. Biochem J 474:333–355

    Article  CAS  PubMed  Google Scholar 

  138. Mandal AK, Mount DB (2019) Interaction between ITM2B and GLUT9 links urate transport to neurodegenerative disorders. Front Physiol 10:1323

    Article  PubMed  PubMed Central  Google Scholar 

  139. Britzolaki A, Saurine J, Klocke B, Pitychoutis PM (2020) A role for SERCA pumps in the neurobiology of neuropsychiatric and neurodegenerative disorders. Adv Exp Med Biol 1131:131–161

    Article  CAS  PubMed  Google Scholar 

  140. Chen JJ, Nathaniel DL, Raghavan P, Nelson M, Tian R, Tse E et al (2019) Compromised function of the ESCRT pathway promotes endolysosomal escape of tau seeds and propagation of tau aggregation. J Biol Chem 294:18952–18966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Kunkle BW, Vardarajan BN, Naj AC, Whitehead PL, Rolati S, Slifer S et al (2017) Early-onset Alzheimer disease and candidate risk genes involved in endolysosomal transport. JAMA Neurol 74:1113–1122

    Article  PubMed  PubMed Central  Google Scholar 

  142. Jadiya P, Kolmetzky DW, Tomar D, Di Meco A, Lombardi AA, Lambert JP et al (2019) Impaired mitochondrial calcium efflux contributes to disease progression in models of Alzheimer’s disease. Nat Commun 10:3885

    Article  PubMed  PubMed Central  Google Scholar 

  143. Moriguchi S, Kita S, Fukaya M, Osanai M, Inagaki R, Sasaki Y et al (2018) Reduced expression of Na+/Ca2+ exchangers is associated with cognitive deficits seen in Alzheimer’s disease model mice. Neuropharmacology 131:291–303

    Article  CAS  PubMed  Google Scholar 

  144. Maezawa I, Nguyen HM, Di Lucente J, Jenkins DP, Singh V, Hilt S et al (2018) Kv1.3 inhibition as a potential microglia-targeted therapy for Alzheimer’s disease: preclinical proof of concept. Brain 141:596–612

    Article  PubMed  Google Scholar 

  145. Shoshan-Barmatz V, Pittala S, Mizrachi D (2019) VDAC1 and the TSPO: expression, interactions, and associated functions in health and disease states. Int J Mol Sci 20:E3348

    Article  Google Scholar 

  146. Shoshan-Barmatz V, Nahon-Crystal E, Shteinfer-Kuzmine A, Gupta R (2018) VDAC1, mitochondrial dysfunction, and Alzheimer’s disease. Pharmacol Res 131:87–101

    Article  CAS  PubMed  Google Scholar 

  147. Heinemeyer T, Stemmet M, Bardien S, Neethling A (2019) Underappreciated roles of the translocase of the outer and inner mitochondrial membrane protein complexes in human disease. DNA Cell Biol 38:23–40

    Article  CAS  PubMed  Google Scholar 

  148. Alrosan A, Aleidi SM, Yang A, Brown AJ, Gelissen IC (2019) The adaptor protein Alix is involved in the interaction between the ubiquitin ligase NEDD4-1 and its targets, ABCG1 and ABCG4. Int J Mol Sci 20:E2714

    Article  Google Scholar 

  149. Adnan M, Islam W, Zhang J, Zheng W, Lu GD (2019) Diverse role of SNARE protein Sec22 in vesicle trafficking, membrane fusion, and autophagy. Cell 8:E337

    Article  Google Scholar 

  150. D’Onofrio G, Panza F, Sancarlo D, Lauriola M, Dagostino MP, Paroni G et al (2019) Hydroxytryptamine transporter gene-linked polymorphic region (5HTTLPR) is associated with delusions in Alzheimer’s disease. Transl Neurodegen 8:4

    Article  Google Scholar 

  151. Fehér Á, Giricz Z, Juhász A, Pakaski M, Janka Z, Kalman J (2018) ABCA1 rs2230805 and rs2230806 common gene variants are associated with Alzheimer’s disease. Neurosci Lett 664:79–83

    Article  PubMed  Google Scholar 

  152. Hu W, Lin X, Zhang H, Zhao N (2017) ATP binding cassette subfamily a member 2 (ABCA2) expression and methylation are associated with Alzheimer’s disease. Med Sci Monit 23:5851–5861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Davis W, Tew KD (2018) ATP-binding cassette transporter-2 (ABCA2) as a therapeutic target. Biochem Pharmacol 151:188–200

    Article  CAS  PubMed  Google Scholar 

  154. Bhatia S, Fu Y, Hsiao JT, Halliday GM, Kim WS (2017) Deletion of Alzheimer’s disease risk gene ABCA7 alters White adipose tissue development and leptin levels. J Alzheimers Dis Rep 1:237–247

    Article  PubMed  PubMed Central  Google Scholar 

  155. Lamartinière Y, Boucau MC, Dehouck L, Krohn M, Pahnke J, Candela P et al (2018) ABCA7 downregulation modifies cellular cholesterol homeostasis and decreases amyloid-β peptide efflux in an in vitro model of the blood-brain barrier. J Alzheimers Dis 64:1195–1211

    Article  PubMed  Google Scholar 

  156. De Roeck A, Duchateau L, Van Dongen J, Cacace R, Bjerke M, van den Bossche T (2018) An intronic VNTR affects splicing of ABCA7 and increases risk of Alzheimer’s disease. Acta Neuropathol 135:827–837

    Article  PubMed  PubMed Central  Google Scholar 

  157. Yamazaki K, Yoshino Y, Mori T, Yoshida T, Ozaki Y, Sao T et al (2017) Gene expression and methylation analysis of ABCA7 in patients with Alzheimer’s disease. J Alzheimers Dis 57:171–181

    Article  CAS  PubMed  Google Scholar 

  158. Liao YC, Lee WJ, Hwang JP, Wang YF, Tsai CF, Wang PN et al (2014) ABCA7 gene and the risk of Alzheimer’s disease in Han Chinese in Taiwan. Neurobiol Aging 35:2423.e7–2423.e13

    Google Scholar 

  159. Zhong X, Liu MY, Sun XH, Wei MJ (2016) Association between ABCB1 polymorphisms and haplotypes and Alzheimer’s disease: a meta-analysis. Sci Rep 6:32708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Nelson PT, Estus S, Abner EL, Parikh I, Malik M, Neltner JH et al (2014) ABCC9 gene polymorphism is associated with hippocampal sclerosis of aging pathology. Acta Neuropathol 127:825–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Sano O, Tsujita M, Shimizu Y, Kato R, Kobayashi A, Kioka N et al (2016) ABCG1 and ABCG4 suppress γ-secretase activity and amyloid β production. PLoS One 11:e0155400

    Article  PubMed  PubMed Central  Google Scholar 

  162. Liu HP, Lin WY, Wang WF, Tsai CH, Wu WC, Chiou MT et al (2013) Genetic variability in copper-transporting P-type adenosine triphosphatase (ATP7B) is associated with Alzheimer’s disease in a Chinese population. J Biol Regul Homeost Agents 27:319–327

    CAS  PubMed  Google Scholar 

  163. Montesanto A, Crocco P, Dato S, Geracitano S, Frangipane F, Colao R et al (2018) Uncoupling protein 4 (UCP4) gene variability in neurodegenerative disorders: further evidence of association in Frontotemporal dementia. Aging (Albany NY) 10:3283–3293

    Article  CAS  PubMed  Google Scholar 

  164. Amir Shaghaghi M, Murphy B, Eck P (2016) The SLC2A14 gene: genomic locus, tissue expression, splice variants, and subcellular localization of the protein. Biochem Cell Biol 94:331–335

    Article  CAS  PubMed  Google Scholar 

  165. Roussotte FF, Gutman BA, Hibar DP, Madsen SK, Narr KL, Thompson PM et al (2015) Carriers of a common variant in the dopamine transporter gene have greater dementia risk, cognitive decline, and faster ventricular expansion. Alzheimers Dement 11:1153–1162

    Article  PubMed  Google Scholar 

  166. Fehér Á, Juhász A, Pákáski M, Kalman J, Janka Z (2014) Association between the 9 repeat allele of the dopamine transporter 40bp variable tandem repeat polymorphism and Alzheimer’s disease. Psychiatry Res 220:730–731

    Article  PubMed  Google Scholar 

  167. Yamazaki K, Yoshino Y, Mori T, Okita M, Yoshida T, Mori Y et al (2016) Association study and meta-analysis of polymorphisms, methylation profiles, and peripheral mRNA expression of the serotonin transporter gene in patients with Alzheimer’s disease. Dement Geriatr Cogn Disord 41:334–347

    Article  CAS  PubMed  Google Scholar 

  168. Teumer A, Chaker L, Groeneweg S, Li Y, Munno CD, Barbieri C et al (2018) Genome-wide analyses identify a role for SLC17A4 and AADAT in thyroid hormone regulation. Nat Commun 9:4455

    Article  PubMed  PubMed Central  Google Scholar 

  169. Xu M, Xiao M, Li S, Yang B (2017) Aquaporins in nervous system. Adv Exp Med 969:81–103

    Article  CAS  Google Scholar 

  170. Zeppenfeld DM, Simon M, Haswell JD, D’Abreo D, Association of perivascular localization of aquaporin-4 with cognition and Alzheimer disease in aging brainsMurchison C, Quinn JF et al (2017) . JAMA Neurol 74:91–99

    Article  PubMed  Google Scholar 

  171. Qureshi YH, Patel VM, Berman DE, Kothiya MJ, Neufeld JL, Vardarajan B et al (2018) An Alzheimer’s disease-linked loss-of-function CLN5 variant impairs cathepsin D maturation, consistent with a retromer trafficking defect. Mol Cell Biol 38:e00011–e00018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Mohanty V, Siddiqui MR, Tomita T, Mayanil CS (2017) Folate receptor alpha is more than just a folate transporter. Neurogenesis (Austin) 4:e1263717

    Article  PubMed  Google Scholar 

  173. Teranishi Y, Inoue M, Yamamoto NG, Kihara T, Weihager B, Ishikawa T et al (2015) Proton myo-inositol cotransporter is a novel γ-secretase associated protein that regulates Aβ production without affecting Notch cleavage. FEBS J 282:3438–3451

    Article  CAS  PubMed  Google Scholar 

  174. Kanai Y, Clémençon B, Simonin A, Leuenberger M, Lochner M, Weisstanner M et al (2013) The SLC1 high-affinity glutamate and neutral amino acid transporter family. Mol Asp Med 34:108–120

    Article  CAS  Google Scholar 

  175. Shubbar MH, Penny JI (2018) Effect of amyloid beta on ATP-binding cassette transporter expression and activity in porcine brain microvascular endothelial cells. Biochim Biophys Acta Gen Subj 1862:2314–2322

    Article  CAS  PubMed  Google Scholar 

  176. Vauthier V, Housset C, Falguières T (2017) Targeted pharmacotherapies for defective ABC transporters. Biochem Pharmacol 136:1–11

    Article  CAS  PubMed  Google Scholar 

  177. Fan J, Zareyan S, Zhao W, Shimizu Y, Pfeifer TA, Tak JH et al (2016) Identification of a chrysanthemic ester as an apolipoprotein E inducer in astrocytes. PLoS One 11:e0162384

    Article  PubMed  PubMed Central  Google Scholar 

  178. Padala AK, Wani A, Vishwakarma RA, Kumar A, Bharate SB (2016) Functional induction of P-glycoprotein efflux pump by phenyl benzenesulfonamides: synthesis and biological evaluation of T0901317 analogs. Eur J Med Chem 122:744–755

    Article  CAS  PubMed  Google Scholar 

  179. Cacabelos R, Llovo R, Fraile C, Fernández-Novoa L (2007) Pharmacogenetic aspects of therapy with cholinesterase inhibitors: the role of CYP2D6 in Alzheimer’s disease pharmacogenetics. Curr Alzheimer Res 4:479–500

    Article  CAS  PubMed  Google Scholar 

  180. Cacabelos R (2007) Donepezil in Alzheimer’s disease: from conventional trials to pharmacogenetics. Neuropsychiatr Dis Treat 3:303–333

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Brewster JT, Dell’Acqua S, Thach DQ, Sessler JL (2019) Classics in chemical neuroscience: donepezil. ACS Chem Neurosci 10:155–167

    Article  CAS  PubMed  Google Scholar 

  182. Noetzli M, Eap CB (2013) Pharmacodynamic, pharmacokinetic and pharmacogenetic aspects of drugs used in the treatment of Alzheimer’s disease. Clin Pharmacokinet 52:225–241

    Article  CAS  PubMed  Google Scholar 

  183. Noetzli M, Guidi M, Ebbing K, Eyer S, Wilhelm L, Michon A et al (2014) Population pharmacokinetic approach to evaluate the effect of CYP2D6, CYP3A, ABCB1, POR and NR1I2 genotypes on donepezil clearance. Br J Clin Pharmacol 78:135–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Xiao T, Jiao B, Zhang W, Tang B, Shen L (2016) Effect of the CYP2D6 and APOE polymorphisms on the efficacy of donepezil in patients with Alzheimer’s disease: a systematic review and meta-analysis. CNS Drugs 30:899–907

    Article  CAS  PubMed  Google Scholar 

  185. Sokolow S, Li X, Chen L, Taylor KD, Rotter JI, Rissman RA et al (2017) Deleterious effect of butyrylcholinesterase K-variant in donepezil treatment of mild cognitive impairment. J Alzheimers Dis 56:229–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Russo P, Kisialiou A, Moroni R, Prinzi G, Fini M (2017) Effect of genetic polymorphisms (SNPs) in CHRNA7 gene on response to acetylcholinesterase inhibitors (AChEI) in patients with Alzheimer’s disease. Curr Drug Targets 18:1179–1190

    Article  CAS  PubMed  Google Scholar 

  187. Noetzli M, Guidi M, Ebbing K, Eyer S, Zumbach S, Giannakopoulos P (2013) Relationship of CYP2D6, CYP3A, POR, and ABCB1 genotypes with galantamine plasma concentrations. Ther Drug Monit 35:270–275

    Article  CAS  PubMed  Google Scholar 

  188. Birks JS, Grimley Evans J (2015) Rivastigmine for Alzheimer’s disease. Cochrane Database Syst Rev 10:CD001191

    Google Scholar 

  189. Gul A, Bakht J, Mehmood F (2019) Huperzine-A response to cognitive impairment and task switching deficits in patients with Alzheimer’s disease. J Chin Med Assoc 82:40–43

    Article  PubMed  Google Scholar 

  190. Lin PP, Li XN, Yuan F, Chen WL, Yang MJ, Xu HR (2016) Evaluation of the in vitro and in vivo metabolic pathway and cytochrome P450 inhibition/induction profile of Huperzine A. Biochem Biophys Res Commun 480:248–253

    Article  CAS  PubMed  Google Scholar 

  191. Noetzli M, Guidi M, Ebbing K, Eyer S, Wilhelm L, Michon A et al (2013) Population pharmacokinetic study of memantine: effects of clinical and genetic factors. Clin Pharmacokinet 52:211–223

    Article  CAS  PubMed  Google Scholar 

  192. Bastrup J, Hansen KH, Poulsen TBG, Kastaniegaard K, Asuni AA, Christensen S et al (2021) Anti-Aβ antibody aducanumab regulates the proteome of senile plaques and closely surrounding tissue in a transgenic mouse model of Alzheimer’s disease. J Alzheimers Dis 79:249–265

    Article  CAS  PubMed  Google Scholar 

  193. Cacabelos R, Cacabelos P, Carril JC (2019) Epigenetics and pharmacoepigenetics of age-related neurodegenerative disorders. In: Cacabelos R (ed) Pharmacoepigenetics. Academic Press/Elsevier, Oxford, UK, pp 903–950

    Chapter  Google Scholar 

  194. Cacabelos R (2014) Epigenomic networking in drug development: from pathogenic mechanisms to pharmacogenomics. Drug Dev Res 75:348–365

    Article  CAS  PubMed  Google Scholar 

  195. Cacabelos R, Torrellas C, López-Muñoz F (2014) Epigenomics of Alzheimer’s disease. J Exp Med 6:75–82

    CAS  Google Scholar 

  196. Cacabelos R, Torrellas C (2014) Epigenetic drug discovery for Alzheimer’s disease. Expert Opin Drug Discovery 9:1059–1086

    Article  CAS  Google Scholar 

  197. Cacabelos R (2019) Pathoepigenetics: the role of epigenetic biomarkers in disease pathogenesis. In: Cacabelos R (ed) Pharmacoepigenetics. Academic Press/Elsevier, Oxford, UK, pp 139–189

    Chapter  Google Scholar 

  198. Qazi TJ, Quan Z, Mir A, Qing H (2018) Epigenetics in Alzheimer’s disease: perspective of DNA methylation. Mol Neurobiol 55:1026–1044

    Article  CAS  PubMed  Google Scholar 

  199. Ciceri F, Rotllant D, Maes T (2017) Understanding epigenetic alterations in Alzheimer’s and Parkinson’s disease: towards targeted biomarkers and therapies. Curr Pharm Des 23:839–857

    Article  CAS  PubMed  Google Scholar 

  200. Swarbrick S, Wragg N, Ghosh S, Stolzing A (2019) Systematic review of miRNA as biomarkers in Alzheimer’s disease. Mol Neurobiol 56:6156–6167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Gupta P, Bhattacharjee S, Sharma AR, Sharma G, Lee SS, Chakraborty C (2017) miRNAs in Alzheimer disease – a therapeutic perspective. Curr Alzheimer Res 14:1198–1206

    Article  CAS  PubMed  Google Scholar 

  202. Silvestro S, Bramanti P, Mazzon E (2019) Role of miRNAs in Alzheimer’s disease and possible fields of application. Int J Mol Sci 20:3979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Kandimalla R, Reddy PH (2017) Therapeutics of neurotransmitters in Alzheimer’s disease. J Alzheimers Dis 57:1049–1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Chu LW (2012) Alzheimer’s disease: early diagnosis and treatment. Hong Kong Med J 18:228–237

    CAS  PubMed  Google Scholar 

  205. Ferreira-Vieira TH, Guimaraes IM, Silva FR, Ribeiro FM (2016) Alzheimer’s disease: targeting the cholinergic system. Curr Neuropharmacol 14:101–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Serretti A (2017) Genetics and pharmacogenetics of mood disorders. Psychiatr Pol 51:197–203

    Article  PubMed  Google Scholar 

  207. Wyska E (2019) Pharmacokinetic considerations for current state-of-the-art antidepressants. Expert Opin Drug Metab Toxicol 15:831–847

    Article  CAS  PubMed  Google Scholar 

  208. Tiwari AK, Souza RP, Müller DJ (2009) Pharmacogenetics of anxiolytic drugs. J Neural Transm 116:667–677

    Article  CAS  PubMed  Google Scholar 

  209. Torrellas C, Risso A, Carril JC (2015) Optimización del uso de antidepresivos con estrategias farmacogenéticas. Gen-T 10:17–26

    Google Scholar 

  210. Osanlou O, Pirmohamed M, Daly AK (2018) Pharmacogenetics of adverse drug reactions. Adv Pharmacol 83:155–190

    Article  CAS  PubMed  Google Scholar 

  211. Ross CJ, Carleton B, Warn DG, Stenton SB, Rassekh SR, Hayden MR (2007) Genotypic approaches to therapy in children: a national active surveillance network (GATC) to study the pharmacogenomics of severe adverse drug reactions in children. Ann N Y Acad Sci 1110:177–192

    Article  CAS  PubMed  Google Scholar 

  212. Eissenberg JC, Aurora R (2019) Pharmacogenomics: what the doctor ordered? Mo Med 116:217–225

    PubMed  PubMed Central  Google Scholar 

  213. Becquemont L (2009) Pharmacogenomics of adverse drug reactions: practical applications and perspectives. Pharmacogenomics 10:961–969

    Article  CAS  PubMed  Google Scholar 

  214. Elzagallaai AA, Greff M, Rieder MJ (2017) Adverse drug reactions in children: the double-edged sword of therapeutics. Clin Pharmacol Ther 101:725–735

    Article  CAS  PubMed  Google Scholar 

  215. Malki MA, Pearson ER (2020) Drug-drug-gene interactions and adverse drug reactions. Pharmacogenomics J 20:355–366

    Article  CAS  PubMed  Google Scholar 

  216. Pirmohamed M (2014) Personalized pharmacogenomics: predicting efficacy and adverse drug reactions. Annu Rev Genomics Hum Genet 15:349–370

    Article  CAS  PubMed  Google Scholar 

  217. Aagaard L, Hansen EH (2009) Information about ADRs explored by pharmacovigilance approaches: a qualitative review of studies on antibiotics, SSRIs and NSAIDs. BMC Clin Pharmacol 9:4

    Article  PubMed  PubMed Central  Google Scholar 

  218. Magro L, Moretti U, Leone R (2012) Epidemiology and characteristics of adverse drug reactions caused by drug-drug interactions. Expert Opin Drug Saf 11:83–94

    Article  CAS  PubMed  Google Scholar 

  219. Weinshilboum RM, Wang L (2017) Pharmacogenomics: precision medicine and drug response. Mayo Clin Proc 92:1711–1722

    Article  CAS  PubMed  Google Scholar 

  220. Roden DM, McLeod HL, Relling MV, Williams MS, Mensah GA, Peterson JF et al (2019) Pharmacogenomics. Lancet 394:521–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Borroni RG (2015) Role of dermatology in pharmacogenomics: drug-induced skin injury. Pharmacogenomics 16:401–412

    Article  CAS  PubMed  Google Scholar 

  222. Davies EC, Green CF, Mottram DR, Pirmohamed M (2007) Adverse drug reactions in hospitals: a narrative review. Curr Drug Saf 2:79–87

    Article  PubMed  Google Scholar 

  223. Chan SL, Ang X, Sani LL, Ng HY, Winther MD, Liu JJ et al (2016) Prevalence and characteristics of adverse drug reactions at admission to hospital: a prospective observational study. Br J Clin Pharmacol 82:1636–1646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Empey PE (2010) Genetic predisposition to adverse drug reactions in the intensive care unit. Crit Care Med 38:S106–S116

    Article  CAS  PubMed  Google Scholar 

  225. Alessandrini M, Chaudhry M, Dodgen TM, Pepper MS (2016) Pharmacogenomics and global precision medicine in the context of adverse drug reactions: top 10 opportunities and challenges for the next decade. OMICS 20:593–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Kim GJ, Lee SY, Park JH, Ryu BY, Kim JH (2017) Role of preemptive genotyping in preventing serious adverse drug events in south Korean patients. Drug Saf 40:65–80

    Article  CAS  PubMed  Google Scholar 

  227. Schildcrout JS, Denny JC, Bowton E, Pulley JM, Basford MA, Cowan JD et al (2012) Optimizing drug outcomes through pharmacogenetics: a case for preemptive genotyping. Clin Pharmacol Ther 92:235–242

    Article  CAS  PubMed  Google Scholar 

  228. Dunnenberger HM, Crews KR, Hoffman JM, Caudle KE, Broeckel U, Howard SC et al (2015) Preemptive clinical pharmacogenetics implementation: current programs in five US medical centers. Annu Rev Pharmacol Toxicol 55:89–106

    Article  CAS  PubMed  Google Scholar 

  229. Roden DM, Van Driest SL, Mosley JD, Wells QS, Robinson JR, Denny JC et al (2018) Benefit of preemptive pharmacogenetic information on clinical outcome. Clin Pharmacol Ther 103:787–794

    Article  PubMed  Google Scholar 

  230. Aagaard L, Hansen EH (2013) Adverse drug reactions reported by consumers for nervous system medications in Europe 2007 to 2011. BMC Pharmacol Toxicol 14:30

    Article  PubMed  PubMed Central  Google Scholar 

  231. Cacabelos R (2019) Epigenetics and pharmacoepigenetics of neurodevelopmental and neuropsychiatric disorders. In: Cacabelos R (ed) Pharmacoepigenetics. Academic Press/Elsevier, Oxford, UK, pp 609–709

    Chapter  Google Scholar 

  232. Kam H, Jeong H (2020) Pharmacogenomic biomarkers and their applications in psychiatry. Genes 11:1445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Cacabelos R, Torrellas C (2015) Pharmacogenomics of antidepressants. HSOA J Psych Dep Anx 1:001

    Article  Google Scholar 

  234. Cacabelos R (2020) Pharmacogenomics of Alzheimer’s and Parkinson’s diseases. Neurosci Lett 726:133807

    Google Scholar 

  235. Cacabelos R (2009) Pharmacogenomic biomarkers in neuropsychiatry: the path to personalized medicine in mental disorders. In: Ritsner MS (ed) The handbook of neuropsychiatric biomarkers, endophenotypes and genes. Vol. IV: Molecular genetic and genomic markers. Springer, Amsterdam, pp 3–63

    Chapter  Google Scholar 

  236. Caroli A, Frisoni GB, Alzheimer’s Disease Neuroimaging Initiative (2010) The dynamics of Alzheimer’s disease biomarkers in the Alzheimer’s disease neuroimaging initiative cohort. Neurobiol Aging 31:1263–1274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Jack CR Jr, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS et al (2013) Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 12:207–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Blennow K, Zetterberg H (2018) Biomarkers for Alzheimer’s disease: current status and prospects for the future. J Intern Med 284:643–663

    Article  CAS  PubMed  Google Scholar 

  239. Zetterberg H, Bendlin BB (2021) Biomarkers for Alzheimer’s disease: preparing for a new era of disease-modifying therapies. Mol Psychiatry 26:296–308

    Article  PubMed  Google Scholar 

  240. Márquez F, Yassa MA (2019) Neuroimaging biomarkers for Alzheimer’s disease. Mol Neurodegener 14:21

    Article  PubMed  PubMed Central  Google Scholar 

  241. Cacabelos R, Lombardi V, Fernández-Novoa L (2004) A functional genomics approach to the analysis of biological markers in Alzheimer disease. In: Takeda M, Tanaka T, Cacabelos R (eds) Molecular neurobiology of Alzheimer’s Disease and related disorders. Karger, Basel, pp 236–285

    Chapter  Google Scholar 

  242. Ruths S, Straand J, Nygaard HA (2001) Psychotropic drug use in nursing homes: diagnostic indications and variations between institutions. Eur J Clin Pharmacol 57:523–528

    Article  CAS  PubMed  Google Scholar 

  243. Brimelow RE, Wollin JA, Byrne GJ, Dissanayaka NN (2019) Prescribing of psychotropic drugs and indicators for use in residential aged care and residents with dementia. Int Psychogeriatr 31:837–847

    Google Scholar 

  244. Holmquist IB, Svensson B, Höglund P (2005) Perceived anxiety, depression, and sleeping problems in relation to psychotropic drug use among elderly in assisted-living facilities. Eur J Clin Pharmacol 61:215–224

    Article  PubMed  Google Scholar 

  245. Zahirovic I, Torisson G, Wattmo C, Londos E (2018) Psychotropic and anti-dementia treatment in elderly persons with clinical signs of dementia with Lewy bodies: a cross-sectional study in 40 nursing homes in Sweden. BMC Geriatr 18:50

    Article  PubMed  PubMed Central  Google Scholar 

  246. Gulla C, Selbaek G, Flo E, Kjome R, Kirkevold O, Husebo BS (2016) Multi-psychotropic drug prescription and the association to neuropsychiatric symptoms in three Norwegian nursing home cohorts between 2004 and 2011. BMC Geriatr 16:115

    Article  PubMed  PubMed Central  Google Scholar 

  247. Janus SI, van Manen JG, IJzerman MJ, Zuidema SU (2016) Psychotropic drug prescriptions in Western European nursing homes. Int Psychogeriatr 28:1775–1790

    Article  PubMed  Google Scholar 

  248. Helvik AS, Šaltytė Benth J, Wu B, Engedal K, Selbaek G (2017) Persistent use of psychotropic drugs in nursing home residents in Norway. BMC Geriatr 17:52

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank their collaborators at the International Center of Neuroscience and Genomic Medicine for technical assistance.

Declaration of Interest

RC is President and stockholder of EuroEspes (Biomedical Research Center), EuroEspes Biotechnology, IABRA, and EuroEspes Publishing Co. NC is a shareholder of EuroEspes, S.A. The authors have no other relevant affiliations or financial involvement with any other organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed apart from those disclosed.

Funding

This article was funded by EuroEspes, S.A., and IABRA (International Agency for Brain Research and Aging).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramón Cacabelos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Cacabelos, R. et al. (2022). Pharmacogenomics of Alzheimer’s Disease: Novel Strategies for Drug Utilization and Development. In: Yan, Q. (eds) Pharmacogenomics in Drug Discovery and Development. Methods in Molecular Biology, vol 2547. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2573-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2573-6_13

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2572-9

  • Online ISBN: 978-1-0716-2573-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics