Skip to main content

Phasing Gene Copies into Polyploid Subgenomes Using a Bayesian Phylogenetic Approach

  • Protocol
  • First Online:
Polyploidy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2545))

  • 1078 Accesses

Abstract

This chapter describes the usage of homologizer to phase gene copies into polyploid subgenomes. Allopolyploids contain multiple copies of each genetic locus, where each copy potentially belongs to a different subgenome with its own distinct evolutionary history. If gene copies across different loci are incorrectly phased (i.e., assigned to the wrong subgenome), then the bifurcating tree assumption underlying multilocus phylogenetic inference and related analyses will be violated, leading to unsound results. homologizer is a highly flexible Bayesian method that uses a phylogenetic framework to infer the posterior probabilities of the phasing of gene copies into subgenomes. We describe how to prepare input data and other considerations needed to perform homologizer analyses and demonstrate how to visualize and interpret the results. We first walk through a basic example using homologizer to phase gene copies into polyploid subgenomes and then demonstrate how homologizer can be used as a hypothesis-testing tool to detect non-homeologous sequences such as hidden paralogs or allelic variation through the tools of Bayesian model comparison.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Freyman WA, Johnson MG, Rothfels CJ (2020) Homologizer: phylogenetic phasing of gene copies into polyploid subgenomes. bioRxiv

    Google Scholar 

  2. Rothfels CJ (2021) Polyploid phylogenetics. New Phytol 230(1):66–72

    Article  CAS  Google Scholar 

  3. Höhna S, Landis MJ, Heath TA, Boussau B, Lartillot N, Moore BR, Huelsenbeck JP, Ronquist F (2016) RevBayes: Bayesian phylogenetic inference using graphical models and an interactive model-specification language. Syst Biol 65(4):726–736

    Article  Google Scholar 

  4. Kass RE, Raftery AE (1995) Bayes factors. J Am Stat Assoc 90(430):773–795

    Article  Google Scholar 

  5. Huber KT, Oxelman B, Lott M, Moulton V (2006) Reconstructing the evolutionary history of polyploids from multilabeled trees. Mol Biol Evol 23(9):1784–1791. [Online] http://mbe.oxfordjournals.org/cgi/content/abstract/23/9/1784

  6. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21(6):1087–1092

    Article  CAS  Google Scholar 

  7. Jordan MI (2004) Graphical models. Stat Sci 19(1):140–155

    Article  Google Scholar 

  8. Airoldi EM (2007) Getting started in probabilistic graphical models. PLoS Comput Biol 3(12):e252

    Article  Google Scholar 

  9. Gelman A, Lee D, Guo J (2015) Stan: a probabilistic programming language for Bayesian inference and optimization. J Educ Behav Stat 40(5):530–543

    Article  Google Scholar 

  10. Salvatier J, Wiecki TV, Fonnesbeck C (2016) Probabilistic programming in Python using PyMC3. Peer J Comput Sci 2:e55

    Article  Google Scholar 

  11. Höhna S, Heath TA, Boussau B, Landis MJ, Ronquist F, Huelsenbeck JP (2014) Probabilistic graphical model representation in phylogenetics. Syst Biol 63(5):753–771

    Article  Google Scholar 

  12. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/

    Google Scholar 

  13. Rothfels CJ, Pryer K, Li F-W (2017) Next-generation polyploid phylogenetics: rapid resolution of hybrid polyploid complexes using PacBio single-molecule sequencing. New Phytol 213(1):413–429

    Article  CAS  Google Scholar 

  14. Tavaré S (1986) Some probabilistic and statistical problems in the analysis of DNA sequences. Lect Math Life Sci 17(2):57–86

    Google Scholar 

  15. Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst Biol 67(5):901

    Google Scholar 

  16. Plummer M, Best N, Cowles K, Vines K (2006) CODA: convergence diagnosis and output analysis for MCMC. R News 6(1):7–11

    Google Scholar 

  17. Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20(2):289–290

    Article  CAS  Google Scholar 

  18. Rambaut A (2009) Figtree. http://tree.bio.ed.ac.uk/software/figtree/

  19. Tribble C et al. (2020) RevGadgets: an R Package for visualizing Bayesian phylogenetic analyses from RevBayes. Methods Ecol Evol

    Google Scholar 

  20. Xie W, Lewis PO, Fan Y, Kuo L, Chen M-H (2011) Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Syst Biol 60(2):150–160

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Freyman, W.A., Rothfels, C.J. (2023). Phasing Gene Copies into Polyploid Subgenomes Using a Bayesian Phylogenetic Approach. In: Van de Peer, Y. (eds) Polyploidy. Methods in Molecular Biology, vol 2545. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2561-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2561-3_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2560-6

  • Online ISBN: 978-1-0716-2561-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics