Skip to main content

Detection of Airborne Inoculum of Hymenoscyphus fraxineus: The Causal Agent of Ash Dieback

  • Protocol
  • First Online:
Plant Pathology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2536))

Abstract

The inoculum of H. fraxineus consists mainly of ascospores released from apothecia which are growing on fallen leaves infected during the previous year. The ascospores can be detected in various manners due to their high concentration in the air during the main sporulation season, which corresponds to astronomic summer. This methodology is focused on one of the methods which have been successfully used. It employs a cheap, but highly efficient rotating arm air sampler and a specific quantitative real-time PCR method for the quantification of the air samples. The methodology is accompanied by lots of detailed theoretical and practical notes for its smooth application, including mentioning other alternatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kowalski T (2006) Chalara fraxinea sp. nov. associated with dieback of ash (Fraxinus excelsior) in Poland. For Pathol 36:264–270. https://doi.org/10.1111/j.1439-0329.2006.00453.x

    Article  Google Scholar 

  2. Pautasso M, Aas G, Queloz V, Holdenrieder O (2013) European ash (Fraxinus excelsior) dieback – a conservation biology challenge. Biol Conserv 158:37–49. https://doi.org/10.1016/j.biocon.2012.08.026

    Article  Google Scholar 

  3. Vasaitis R, Enderle R (2017) Dieback of European ash (Fraxinus spp.) -consequences and guidelines for sustainable management the report on European Cooperation in Science & Technology (COST) Action FP1103 FRAXBACK

    Google Scholar 

  4. Kowalski T, Holdenrieder O (2009) Pathogenicity of Chalara fraxinea. For Pathol 39:1–7. https://doi.org/10.1111/j.1439-0329.2008.00565.x

    Article  Google Scholar 

  5. Gross A, Zaffarano PL, Duo A, Grünig CR (2012) Reproductive mode and life cycle of the ash dieback pathogen Hymenoscyphus pseudoalbidus. Fungal Genet Biol 49:977–986. https://doi.org/10.1016/j.fgb.2012.08.008

    Article  CAS  PubMed  Google Scholar 

  6. Fones HN, Mardon C, Gurr SJ (2016) A role for the asexual spores in infection of Fraxinus excelsior by the ash-dieback fungus Hymenoscyphus fraxineus. Sci Rep 6:1–10. https://doi.org/10.1038/srep34638

    Article  CAS  Google Scholar 

  7. Cleary MR, Arhipova N, Gaitnieks T et al (2013) Natural infection of Fraxinus excelsior seeds by Chalara fraxinea. For Pathol 43:83–85. https://doi.org/10.1111/efp.12012

    Article  Google Scholar 

  8. Chandelier A, Gerarts F, San Martin G et al (2016) Temporal evolution of collar lesions associated with ash dieback and the occurrence of Armillaria in Belgian forests. For Pathol 46:289–297. https://doi.org/10.1111/efp.12258

    Article  Google Scholar 

  9. Kräutler K, Treitler R, Kirisits T (2015) Hymenoscyphus fraxineus can directly infect intact current-year shoots of Fraxinus excelsior and artificially exposed leaf scars. For Pathol 45:274–280. https://doi.org/10.1111/efp.12168

    Article  Google Scholar 

  10. Hietala AM, Timmermann V, BØrja I et al (2013) The invasive ash dieback pathogen Hymenoscyphus pseudoalbidus exerts maximal infection pressure prior to the onset of host leaf senescence. Fungal Ecol 6:302–308. https://doi.org/10.1016/j.funeco.2013.03.008

    Article  Google Scholar 

  11. Timmermann V, Børja I, Hietala AM et al (2011) Ash dieback: pathogen spread and diurnal patterns of ascospore dispersal, with special emphasis on Norway. EPPO Bull 41:14–20. https://doi.org/10.1111/j.1365-2338.2010.02429.x

    Article  Google Scholar 

  12. Chandelier A, Helson M, Dvorak M et al (2014) Detection and quantification of airborne inoculum of Hymenoscyphus pseudoalbidus using real-time PCR assays. Plant Pathol 63:1296–1305. https://doi.org/10.1111/ppa.12218

    Article  CAS  Google Scholar 

  13. Husson C, Caël O, Grandjean JP et al (2012) Occurrence of Hymenoscyphus pseudoalbidus on infected ash logs. Plant Pathol 61:889–895. https://doi.org/10.1111/j.1365-3059.2011.02578.x

    Article  Google Scholar 

  14. Aguayo J, Husson C, Chancerel E et al (2021) Combining permanent aerobiological networks and molecular analyses for large-scale surveillance of forest fungal pathogens: a proof-of-concept. Plant Pathol 70:181–194. https://doi.org/10.1111/ppa.13265

    Article  CAS  Google Scholar 

  15. Grosdidier M, Aguayo J, Marçais B et al (2017) Detection of plant pathogens using real-time PCR: how reliable are late Ct values? Plant Pathol 66:359–367. https://doi.org/10.1111/ppa.12591

    Article  Google Scholar 

  16. D’Amato G, Lobefalo G (1989) Allergenic pollens in the southern Mediterranean area. J Allergy Clin Immunol 83:116–122

    Article  Google Scholar 

  17. Hirst JM (1952) An automatic volumetric spore trap. Ann Appl Biol 39:257–265

    Article  Google Scholar 

  18. Dvořák M, Rotková G, Botella L (2016) Detection of airborne inoculum of Hymenoscyphus fraxineus and H. albidus during seasonal fluctuations associated with absence of apothecia. Forests 7:1–13. https://doi.org/10.3390/f7010001

    Article  Google Scholar 

  19. Dhingra OD, Sinclair JB (1995) Basic plant pathology methods, 2nd edn. CRC Press

    Google Scholar 

  20. Lacey ME, West JS (2006) The air Spora – a manual for catching and identifying airborne biological particles. Springer

    Book  Google Scholar 

  21. Perkins WA, Leighton PA (1957) The rotorod sampler. Second semi-annual report no. CML 186, aerosol laboratory

    Google Scholar 

  22. McCartney HA, Fitt BDL, Schmechel D (1997) Sampling bioaerosols in plant pathology. J Aerosol Sci 28:349–364

    Article  CAS  Google Scholar 

  23. Čermáková V, Kudláček T, Rotková G et al (2017) Hymenoscyphus fraxineus mitovirus 1 naturally disperses through the airborne inoculum of its host, Hymenoscyphus fraxineus, in the Czech Republic. Biocontrol Sci Tech 27:992–1008. https://doi.org/10.1080/09583157.2017.1368455

    Article  Google Scholar 

  24. Chandelier A, André F, Laurent F (2010) Detection of Chalara fraxinea in common ash (Fraxinus excelsior) using real time PCR. For Pathol 40:87–95. https://doi.org/10.1111/j.1439-0329.2009.00610.x

    Article  Google Scholar 

  25. Botella L, Bačová A, Dvořák M et al (2019) Detection and quantification of the air inoculum of Caliciopsis pinea in a plantation of Pinus radiata in Italy. iForest - Biogeosc For 12:193–198. https://doi.org/10.3832/ifor2866-012

    Article  Google Scholar 

  26. Dvořák M, Janoš P, Botella L et al (2017) Spore dispersal patterns of fusarium circinatum on an infested Monterey pine forest in North-Western Spain. Forests 8:432. https://doi.org/10.3390/f8110432

    Article  Google Scholar 

  27. UCCE Napa Viticulture Advisor (2020) How to build a rotating arm spore trap for powdery mildew. https://www.youtube.com/watch?v=D0kJZbNw7tc

  28. Noll KE (1970) A rotary inertial impactor for sampling giant particles in the atmosphere. Atmos Environ 4:9–19

    Article  Google Scholar 

  29. Kowalski T, Holdenrieder O (2009) The teleomorph of Chalara fraxinea, the causal agent of ash dieback. For Pathol 39:304–308. https://doi.org/10.1111/j.1439-0329.2008.00589.x

    Article  Google Scholar 

  30. Dvořák M, Rotková G (2015) Spore dispersal of Hymenoscyphus fraxineus in the Czech Republic. In: Joint IUFRO Working Party Meetings 7–12 June, 2015 in Uppsala, Sweden. Swedish University of Agricultural Sciences, p 30

    Google Scholar 

  31. Koukol O, Haňáčková Z, Dvořák M, Havrdová L (2016) Unseen, but still present in Czechia: Hymenoscyphus albidus detected by real-time PCR, but not by intensive sampling. Mycol Prog 15:1–9. https://doi.org/10.1007/s11557-015-1149-5

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by using the laboratories of Mendel University in Brno, Phytophthora Research Centre (funded by project CZ.02.1.01/0.0/0.0/15_003/0000453), and laboratories of the University of South Bohemia in České Budějovice, Faculty of Agriculture and Technologies, Department of Genetics and Agricultural Biotechnology. Furthermore, this work was financed from a HORIZON 2020 project (agreement no. 771271): Holistic Management of Emerging Forest Pests and Diseases (HOMED).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miloň Dvořák .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dvořák, M. (2022). Detection of Airborne Inoculum of Hymenoscyphus fraxineus: The Causal Agent of Ash Dieback. In: Luchi, N. (eds) Plant Pathology. Methods in Molecular Biology, vol 2536. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2517-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2517-0_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2516-3

  • Online ISBN: 978-1-0716-2517-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics