Skip to main content

Determination of Antibiotic Resistance Gene Transfer

  • Chapter
  • First Online:
Biosafety Assessment of Probiotic Potential

Part of the book series: Methods and Protocols in Food Science ((MPFS))

  • 366 Accesses

Abstract

Probiotics are recognized as safe by the US Food and Drug Administration (USFDA) and the European Food Safety. But many probiotic bacteria serve as a reservoir of antibiotic resistance genes. Antibiotic resistance (ABR) in bacteria is recognized worldwide as an important threat to humans and animal health, and it is imperatively essential to know the mechanisms of antibiotic resistance together with its emergence and dissemination. An important way of transmission of antibiotic-resistant bacteria in humans and animals occurs through food especially consumption of fermented food containing live probiotic bacteria which serve as a vehicle for antibiotic resistance, with a direct link between the animal indigenous microflora and the human gastrointestinal tract (GIT). Therefore, the safety evaluation of probiotics for antibiotic resistance gene transfer has been assessed by conjugation filter mating assay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mattia A, Merker R (2008) Regulation of probiotic substances as ingredients in foods: premarket approval or “generally recognized as safe” notification. Clin Infect Dis 46:S115–S118

    Article  Google Scholar 

  2. Agarwal M, Garg FC, Negi YK (2014) Antibiotic resistance and plasmid profile of Leuconostoc spp. isolated from carrot. Afr J Microbiol Res 6(1):7–12

    CAS  Google Scholar 

  3. Masco L, Van Hoorde K, De Brandt E (2006) Antimicrobial susceptibility of Bifidobacterium strains from humans, animals and probiotic products. J Antimicrob Chemother 58(1):85–94

    Article  CAS  Google Scholar 

  4. Ventola CL (2015) The antibiotic resistance crisis: part 1: causes and threats. Pharm Ther 40(4):277–283

    Google Scholar 

  5. Alekshun MN, Levy SB (2007) Molecular mechanisms of antibacterial multidrug resistance. Cell 128:1037–1050

    Article  CAS  Google Scholar 

  6. Santagati M, Campanile F, Stefani S (2012) Genomicdiversificationofenterococciinhosts: the roleofthemobilome. Front Microbiol 3:95

    Article  Google Scholar 

  7. Wozniak RA, Waldor MK (2010) Integrative and conjugative elements:mosaic mobile genetic elements enabling dynamic lateral geneflow. Nat Rev Microbiol 8:552–563

    Article  CAS  Google Scholar 

  8. Pickard JM, Zeng MY, Caruso R, Núñez G (2017) Gut microbiota: role in pathogen colonization, immune responses, and inflammatory disease. Ther Immunol Rev 279(1):70–89

    Article  CAS  Google Scholar 

  9. Hojsak I, Shamir R (2013) Probiotic bacteria and their effect on human health and Well-being. World Rev Nutr Diet 107:161–170

    Article  Google Scholar 

  10. Wang K, Zhang H, Feng J, Ma L, de la Fuente-Nunez C, Wang S, Lu X (2019) Antibiotic resistance of lactic acid bacteria isolated from dairy products in Tianjin, China. J Agric Food Res 1:100006

    Article  Google Scholar 

  11. Fischer EA, Dierikx CM, van Essen-Zandbergen A, Mevius D, Stegeman A, Velkers FC, Klinkenberg D (2019) Competition between Escherichia coli populations with and without plasmids carrying a gene encoding extended-spectrum beta-lactamase in the broiler chicken gut. Appl Environ Microbiol 85:e00892–e00819

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Alderliesten JB, Duxbury SJ, Zwart MP, de Visser JAG, Stegeman A, Fischer EA (2020) Effect of donor-recipient relatedness on the plasmid conjugation frequency: a meta-analysis. BMC Microbiol 20:1–10

    Article  Google Scholar 

  13. Toomey N, Monaghan A, Fanning S, Bolton D (2009) Transfer of antibiotic resistance marker genes between lactic acid bacteria in model rumen and plant environments. Appl Environ Microbiol 75(10):3146–3152

    Article  CAS  Google Scholar 

  14. Florez AB, Campedelli I, Delgado S, Alegria A, Salvetti E, Felis GE, Torriani S (2016) Antibiotic susceptibility profiles of dairy Leuconostoc, analysis of the genetic basis of atypical resistances and transfer of genes in vitro and in a food matrix. PLoS One 11(1):e0145203

    Article  Google Scholar 

  15. Guo H, Pan L, Li L, Lu J, Kwok L, Menghe B, Zhang W (2017) Characterization of antibiotic resistance genes from lactobacillus isolated from traditional dairy products. J Food Sci 82(3):724–730

    Article  CAS  Google Scholar 

  16. Preethi C, Thumu SCR, Halami PM (2017) Occurrence and distribution of multiple antibiotic-resistant enterococcus and lactobacillus spp. from Indian poultry: in vivo transferability of their erythromycin, tetracycline and vancomycin resistance. Ann Microbiol 67(6):395–404

    Article  CAS  Google Scholar 

  17. Anisimova E, Yarullina D (2018) Characterization of erythromycin and tetracycline resistance in lactobacillus fermentum strains. Int J Microbiol 2018:3912326

    Article  Google Scholar 

  18. Milanovic V, Osimani A, Cardinali F, Litta-Mulondo A, Vignaroli C, Citterio B, Clementi F (2019) Erythromycinresistant lactic acid bacteria in the healthy gut of vegans, ovo-lacto vegetarians and omnivores. PLoS One 14(8):e0220549

    Article  CAS  Google Scholar 

  19. Yang C, Yu T (2019) Characterization and transfer of antimicrobial resistance in lactic acid bacteria from fermented dairy products in China. J Inf Develop Countries 13(2):137–148

    Article  CAS  Google Scholar 

  20. Thumu SCR, Halami PM (2019) Conjugal transfer of erm (B) and multiple tet genes from lactobacillus spp. to bacterial pathogens in animal gut, in vitro and during food fermentation. Food Res Int 116:1066–1075

    Article  CAS  Google Scholar 

  21. Terra MR, Tosoni NF, Furlaneto MC, Furlaneto-Maia L (2019) Assessment of vancomycin resistance transfer among enterococci of clinical importance in milk matrix. J Environ Sci Health 54(12):925–929

    Article  CAS  Google Scholar 

  22. Guo H, Zhang W, Kwok LY, Menghe B (2019) In vitro evaluation of antibiotic resistance of lactobacillus bulgaricus strains isolated from traditional dairy products. Czech J Food Sci 37(1):36–43

    Article  CAS  Google Scholar 

  23. Chajęcka-Wierzchowska W, Zadernowska A, Zarzecka U, Zakrzewski A, Gajewska J (2019) Enterococci from ready-to-eat food–horizontal gene transfer of antibiotic resistance genes and genotypic characterization by PCR melting profile. J Sci Food Agric 99(3):1172–1179

    Article  Google Scholar 

  24. Ku S, Yang S, Lee HH, Choe D, Johnston TV, Ji GE, Park MS (2020) Biosafety assessment of Bifidobacterium animalis subsp. lactis AD011 used for human consumption as a probiotic microorganism. Food Control 117:106985

    Article  CAS  Google Scholar 

  25. Sirichoat A, Florez AB, Vázquez L, Buppasiri P, Panya M, Lulitanond V, Mayo B (2020) Antibiotic resistance-susceptibility profiles of enterococcus faecalis and streptococcus spp. from the human vagina, and genome analysis of the genetic basis of intrinsic and acquired resistances. Front Microbiol 11:1438

    Article  Google Scholar 

  26. Tarrah A, Pakroo S, Corich V, Giacomini A (2021) Identification and transferability of tetracycline resistance in Streptococcus thermophilus during milk fermentation, storage, and gastrointestinal transit. Fermentation 7(2):65

    Article  CAS  Google Scholar 

  27. Kang MS, Yeu JE, Hong SP (2019) Safety evaluation of oral care probiotics Weissellacibaria CMU and CMS1 by phenotypic and genotypic analysis. Int J Mol Sci 20(11):2693

    Article  CAS  Google Scholar 

  28. Leungtongkam U, Thummeepak R, Tasanapak K, Sitthisak S (2018) Acquisition and transfer of antibiotic resistance genes in association with conjugative plasmid or class 1 integrons of Acinetobacter baumannii. PLoS One 13(12):e0208468

    Article  Google Scholar 

  29. Li N, Yu H, Liu H, Wang Y, Zhou J, Ma X, Qiao S (2019) Horizontal transfer of vanA between probiotic enterococcus faecium and enterococcus faecalis in fermented soybean meal and in digestive tract of growing pigs. J Animal Sci Biotechnol 10:1–11

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jeya, K.R., Khalifa, A., Veerapagu, M., Sankaranarayanan, A. (2022). Determination of Antibiotic Resistance Gene Transfer. In: Dwivedi, M.K., Amaresan, N., Sankaranarayanan, A., Begum, R. (eds) Biosafety Assessment of Probiotic Potential. Methods and Protocols in Food Science . Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2509-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2509-5_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2508-8

  • Online ISBN: 978-1-0716-2509-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics