Skip to main content

Specificity Analysis of Protein Methyltransferases and Discovery of Novel Substrates Using SPOT Peptide Arrays

  • Protocol
  • First Online:
Histone Methyltransferases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2529))

Abstract

Posttranslational methylation of amino acid side chains in proteins mainly occurs on lysine, arginine, glutamine, and histidine residues. It is introduced by different protein methyltransferases (PMTs) and regulates many aspects of protein function including stability, activity, localization, and protein/protein interactions. Although the biological effects of PMTs are mediated by their methylation substrates, the full substrate spectrum of most PMTs is not known. For many PMTs, their activity on a particular potential substrate depends, among other factors, on the peptide sequence containing the target residue for methylation. In this protocol, we describe the application of SPOT peptide arrays to investigate the substrate specificity of PMTs and identify novel substrates. Methylation of SPOT peptide arrays makes it possible to study the methylation of many different peptides in one experiment at reasonable costs and thereby provides detailed information about the specificity of the PMT under investigation. In these experiments, a known substrate sequence is used as template to design a SPOT peptide array containing peptides with single amino acid exchanges at all positions of the sequence. Methylation of the array with the PMT provides detailed preferences for each amino acid at each position in the substrate sequence, yielding a substrate sequence specificity profile. This information can then be used to identify novel potential PMT substrates by in silico data base searches. Methylation of novel substrate candidates can be validated in SPOT arrays at peptide level, followed by validation at protein level in vitro and in cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frank R (1992) Spot-synthesis: an easy technique for the positionally addressable, parallel chemical synthesis on a membrane support. Tetrahedron 48(42):9217–9232. https://doi.org/10.1016/S0040-4020(01)85612-X

    Article  CAS  Google Scholar 

  2. Hilpert K, Winkler DF, Hancock RE (2007) Peptide arrays on cellulose support: SPOT synthesis, a time and cost efficient method for synthesis of large numbers of peptides in a parallel and addressable fashion. Nat Protoc 2(6):1333–1349. https://doi.org/10.1038/nprot.2007.160

    Article  CAS  PubMed  Google Scholar 

  3. Winkler DF, Hilpert K, Brandt O, Hancock RE (2009) Synthesis of peptide arrays using SPOT-technology and the CelluSpots-method. Methods Mol Biol 570:157–174. https://doi.org/10.1007/978-1-60327-394-7_5

    Article  CAS  PubMed  Google Scholar 

  4. Leung GC, Murphy JM, Briant D, Sicheri F (2009) Characterization of kinase target phosphorylation consensus motifs using peptide SPOT arrays. Methods Mol Biol 570:187–195. https://doi.org/10.1007/978-1-60327-394-7_7

    Article  CAS  PubMed  Google Scholar 

  5. Reineke U, Volkmer-Engert R, Schneider-Mergener J (2001) Applications of peptide arrays prepared by the SPOT-technology. Curr Opin Biotechnol 12(1):59–64. https://doi.org/10.1016/s0958-1669(00)00178-6

    Article  CAS  PubMed  Google Scholar 

  6. Winkler DF, Andresen H, Hilpert K (2011) SPOT synthesis as a tool to study protein-protein interactions. Methods Mol Biol 723:105–127. https://doi.org/10.1007/978-1-61779-043-0_8

    Article  CAS  PubMed  Google Scholar 

  7. Bock I, Kudithipudi S, Tamas R, Kungulovski G, Dhayalan A, Jeltsch A (2011) Application of Celluspots peptide arrays for the analysis of the binding specificity of epigenetic reading domains to modified histone tails. BMC Biochem 12:48. https://doi.org/10.1186/1471-2091-12-48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kudithipudi S, Lungu C, Rathert P, Happel N, Jeltsch A (2014) Substrate specificity analysis and novel substrates of the protein lysine methyltransferase NSD1. Chem Biol 21(2):226–237. https://doi.org/10.1016/j.chembiol.2013.10.016

    Article  CAS  PubMed  Google Scholar 

  9. Kungulovski G, Kycia I, Mauser R, Jeltsch A (2015) Specificity analysis of histone modification-specific antibodies or reading domains on histone peptide arrays. Methods Mol Biol 1348:275–284. https://doi.org/10.1007/978-1-4939-2999-3_24

    Article  CAS  PubMed  Google Scholar 

  10. Frank R (2002) The SPOT-synthesis technique. Synthetic peptide arrays on membrane supports--principles and applications. J Immunol Methods 267(1):13–26. https://doi.org/10.1016/s0022-1759(02)00137-0

    Article  CAS  PubMed  Google Scholar 

  11. Li SS, Wu C (2009) Using peptide array to identify binding motifs and interaction networks for modular domains. Methods Mol Biol 570:67–76. https://doi.org/10.1007/978-1-60327-394-7_3

    Article  CAS  PubMed  Google Scholar 

  12. Walsh CT, Garneau-Tsodikova S, Gatto GJ Jr (2005) Protein posttranslational modifications: the chemistry of proteome diversifications. Angew Chem Int Ed 44(45):7342–7372. https://doi.org/10.1002/anie.200501023

    Article  CAS  Google Scholar 

  13. Clarke SG (2013) Protein methylation at the surface and buried deep: thinking outside the histone box. Trends Biochem Sci 38(5):243–252. https://doi.org/10.1016/j.tibs.2013.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21(3):381–395. https://doi.org/10.1038/cr.2011.22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhao Y, Garcia BA (2015) Comprehensive catalog of currently documented histone modifications. Cold Spring Harb Perspect Biol 7(9):a025064. https://doi.org/10.1101/cshperspect.a025064

    Article  PubMed  PubMed Central  Google Scholar 

  16. Greer EL, Shi Y (2012) Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 13(5):343–357. https://doi.org/10.1038/nrg3173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Weirich S, Jeltsch A (2017) Mutations in histone lysine methyltransferases and demethylases. In: Encyclopedia of cancer. Elsevier 538–550. https://doi.org/10.1016/B978-0-12-801238-3.65056-0

  18. Zhang X, Huang Y, Shi X (2015) Emerging roles of lysine methylation on non-histone proteins. Cell Mol Life Sci 72(22):4257–4272. https://doi.org/10.1007/s00018-015-2001-4

    Article  CAS  PubMed  Google Scholar 

  19. Biggar KK, Li SSC (2015) Non-histone protein methylation as a regulator of cellular signalling and function. Nat Rev Mol Cell Biol 16(1):5–17. https://doi.org/10.1038/nrm3915

    Article  CAS  PubMed  Google Scholar 

  20. Kudithipudi S, Jeltsch A (2016) Approaches and guidelines for the identification of novel substrates of protein lysine methyltransferases. Cell Chem Biol 23(9):1049–1055. https://doi.org/10.1016/j.chembiol.2016.07.013

    Article  CAS  PubMed  Google Scholar 

  21. Rathert P, Zhang X, Freund C, Cheng X, Jeltsch A (2008) Analysis of the substrate specificity of the Dim-5 histone lysine methyltransferase using peptide arrays. Chem Biol 15(1):5–11. https://doi.org/10.1016/j.chembiol.2007.11.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rathert P, Dhayalan A, Murakami M, Zhang X, Tamas R, Jurkowska R, Komatsu Y, Shinkai Y, Cheng X, Jeltsch A (2008) Protein lysine methyltransferase G9a acts on non-histone targets. Nat Chem Biol 4(6):344–346. https://doi.org/10.1038/nchembio.88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dhayalan A, Kudithipudi S, Rathert P, Jeltsch A (2011) Specificity analysis-based identification of new methylation targets of the SET7/9 protein lysine methyltransferase. Chem Biol 18(1):111–120. https://doi.org/10.1016/j.chembiol.2010.11.014

    Article  CAS  PubMed  Google Scholar 

  24. Kudithipudi S, Dhayalan A, Kebede AF, Jeltsch A (2012) The SET8 H4K20 protein lysine methyltransferase has a long recognition sequence covering seven amino acid residues. Biochimie 94(11):2212–2218. https://doi.org/10.1016/j.biochi.2012.04.024

    Article  CAS  PubMed  Google Scholar 

  25. Schuhmacher MK, Kudithipudi S, Kusevic D, Weirich S, Jeltsch A (2015) Activity and specificity of the human SUV39H2 protein lysine methyltransferase. Biochim Biophys Acta 1849(1):55–63. https://doi.org/10.1016/j.bbagrm.2014.11.005

    Article  CAS  PubMed  Google Scholar 

  26. Lanouette S, Davey JA, Elisma F, Ning Z, Figeys D, Chica RA, Couture JF (2015) Discovery of substrates for a SET domain lysine methyltransferase predicted by multistate computational protein design. Structure 23(1):206–215. https://doi.org/10.1016/j.str.2014.11.004

    Article  CAS  PubMed  Google Scholar 

  27. Weirich S, Schuhmacher MK, Kudithipudi S, Lungu C, Ferguson AD, Jeltsch A (2020) Analysis of the substrate specificity of the SMYD2 protein lysine methyltransferase and discovery of novel non-histone substrates. Chembiochem 21(1–2):256–264. https://doi.org/10.1002/cbic.201900582

    Article  CAS  PubMed  Google Scholar 

  28. Weirich S, Kudithipudi S, Jeltsch A (2016) Specificity of the SUV4-20H1 and SUV4-20H2 protein lysine methyltransferases and methylation of novel substrates. J Mol Biol 428(11):2344–2358. https://doi.org/10.1016/j.jmb.2016.04.015

    Article  CAS  PubMed  Google Scholar 

  29. Kusevic D, Kudithipudi S, Jeltsch A (2016) Substrate specificity of the HEMK2 protein glutamine methyltransferase and identification of novel substrates*. J Biol Chem 291(12):6124–6133. https://doi.org/10.1074/jbc.M115.711952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kudithipudi S, Schuhmacher MK, Kebede AF, Jeltsch A (2017) The SUV39H1 protein lysine methyltransferase Methylates chromatin proteins involved in heterochromatin formation and VDJ recombination. ACS Chem Biol 12(4):958–968. https://doi.org/10.1021/acschembio.6b01076

    Article  CAS  PubMed  Google Scholar 

  31. Kusevic D, Kudithipudi S, Iglesias N, Moazed D, Jeltsch A (2017) Clr4 specificity and catalytic activity beyond H3K9 methylation. Biochimie 135:83–88. https://doi.org/10.1016/j.biochi.2017.01.013

    Article  CAS  PubMed  Google Scholar 

  32. Ardehali MB, Anselmo A, Cochrane JC, Kundu S, Sadreyev RI, Kingston RE (2017) Polycomb repressive complex 2 methylates elongin A to regulate transcription. Mol Cell 68(5):872–884.e6. https://doi.org/10.1016/j.molcel.2017.10.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schuhmacher MK, Rolando M, Bröhm A, Weirich S, Kudithipudi S, Buchrieser C, Jeltsch A (2018) The legionella pneumophila methyltransferase RomA methylates also non-histone proteins during infection. J Mol Biol 430(13):1912–1925. https://doi.org/10.1016/j.jmb.2018.04.032

    Article  CAS  PubMed  Google Scholar 

  34. Jakobsson ME, Małecki JM, Halabelian L, Nilges BS, Pinto R, Kudithipudi S, Munk S, Davydova E, Zuhairi FR, Arrowsmith CH, Jeltsch A, Leidel SA, Olsen JV, Falnes PØ (2018) The dual methyltransferase METTL13 targets N terminus and Lys55 of eEF1A and modulates codon-specific translation rates. Nat Commun 9(1):3411. https://doi.org/10.1038/s41467-018-05646-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schuhmacher MK, Beldar S, Khella MS, Bröhm A, Ludwig J, Tempel W, Weirich S, Min J, Jeltsch A (2020) Sequence specificity analysis of the SETD2 protein lysine methyltransferase and discovery of a SETD2 super-substrate. Commun Biol 3(1):511. https://doi.org/10.1038/s42003-020-01223-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Davydova E, Shimazu T, Schuhmacher MK, Jakobsson ME, Willemen HLDM, Liu T, Moen A, Ho AYY, Małecki J, Schroer L, Pinto R, Suzuki T, Grønsberg IA, Sohtome Y, Akakabe M, Weirich S, Kikuchi M, Olsen JV, Dohmae N, Umehara T, Sodeoka M, Siino V, McDonough MA, Eijkelkamp N, Schofield CJ, Jeltsch A, Shinkai Y, Falnes PØ (2021) The methyltransferase METTL9 mediates pervasive 1-methylhistidine modification in mammalian proteomes. Nat Commun 12(1):891. https://doi.org/10.1038/s41467-020-20670-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gayatri S, Cowles MW, Vemulapalli V, Cheng D, Sun Z-W, Bedford MT (2016) Using oriented peptide array libraries to evaluate methylarginine-specific antibodies and arginine methyltransferase substrate motifs. Sci Rep 6(1):28718. https://doi.org/10.1038/srep28718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675. https://doi.org/10.1038/nmeth.2089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E (2015) PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res 43(Database issue):D512–D520. https://doi.org/10.1093/nar/gku1267

    Article  CAS  PubMed  Google Scholar 

  40. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, Mering CV (2019) STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47(D1):D607–d613. https://doi.org/10.1093/nar/gky1131

    Article  CAS  PubMed  Google Scholar 

  41. Obenauer JC, Cantley LC, Yaffe MB (2003) Scansite 2.0: proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res 31(13):3635–3641. https://doi.org/10.1093/nar/gkg584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Jeltsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Weirich, S., Jeltsch, A. (2022). Specificity Analysis of Protein Methyltransferases and Discovery of Novel Substrates Using SPOT Peptide Arrays. In: Margueron, R., Holoch, D. (eds) Histone Methyltransferases. Methods in Molecular Biology, vol 2529. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2481-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2481-4_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2480-7

  • Online ISBN: 978-1-0716-2481-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics