Skip to main content

Characterization of SET-Domain Histone Lysine Methyltransferase Substrates Using a Cofactor S-Adenosyl-l-Methionine Surrogate

  • Protocol
  • First Online:
Histone Methyltransferases

Abstract

Identification of histone lysine methyltransferase (HKMT) substrates has recently benefited from chemical-biology-based strategies in which artificial S-adenosyl-l-methionine (SAM) cofactors are engineered to allow substrate labeling using either the wild-type target enzyme or designed mutants. Once labeled, substrates can be selectively functionalized with an affinity tag, using a bioorthogonal ligation reaction, to allow their recovery from cell extracts and subsequent identification. In this chapter, we describe steps on how to proceed to set up such an approach to characterize substrates of specific HKMTs of the SET domain superfamily, from the characterization of the HKMT able to accommodate a SAM surrogate containing a bioorthogonal moiety, to the proteomic analysis conducted on a cell extract. We focus in particular on the controls that are necessary to ensure reliable proteomic data analysis. The example of PR-Set7 on which we have implemented this approach is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACN:

Acetonitrile

BSA:

Bovine serum albumin

CuAAC:

Cu(I)-catalyzed alkyne-azide cycloaddition

DTT :

Dithiothreitol

EDTA :

Ethylenediamine tetraacetic acid

HKMT:

Histone lysine methyltransferase

LC:

Liquid chromatography

MALDI TOF:

Matrix assisted laser desorption ionization time-of-flight

MS:

Mass spectrometry

PEG:

Polyethylene glycol

PTM:

Post-translational modification

SAM:

S-Adenosyl-l-methionine

SDS-PAGE :

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

SET:

Su(var)3–9, Enhancer-of-zeste and Trithorax

TFA :

Trifluoroacetic acid

THPTA:

Tris(3-hydroxypropyltriazolylmethyl)amine

XIC:

Extracted ion chromatogram

References

  1. Dillon SC, Zhang X, Trievel RC, Cheng X (2005) The SET-domain protein superfamily: protein lysine methyltransferases. Genome Biol 6:227. https://doi.org/10.1186/gb-2005-6-8-227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhang X, Huang Y, Shi X (2015) Emerging roles of lysine methylation on non-histone proteins. Cell Mol Life Sci 72:4257–4272. https://doi.org/10.1007/s00018-015-2001-4

    Article  CAS  PubMed  Google Scholar 

  3. Song Y, Wu F, Wu J (2016) Targeting histone methylation for cancer therapy: enzymes, inhibitors, biological activity and perspectives. J Hematol Oncol 9:49. https://doi.org/10.1186/s13045-016-0279-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Carlson SM, Gozani O (2016) Nonhistone lysine methylation in the regulation of cancer pathways. Cold Spring Harb Perspect Med 6:a026435. https://doi.org/10.1101/cshperspect.a026435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Levy D (2019) Lysine methylation signaling of non-histone proteins in the nucleus. Cell Mol Life Sci 76:2873–2883. https://doi.org/10.1007/s00018-019-03142-0

    Article  CAS  PubMed  Google Scholar 

  6. Lund PJ, Lehman SM, Garcia BA (2019) Quantitative analysis of global protein lysine methylation by mass spectrometry. Methods Enzymol 626:475–498. https://doi.org/10.1016/bs.mie.2019.07.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Carlson SM, Gozani O (2014) Emerging technologies to map the protein methylome. J Mol Biol 426:3350–3362. https://doi.org/10.1016/j.jmb.2014.04.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Luo M (2012) Current chemical biology approaches to interrogate protein methyltransferases. ACS Chem Biol 7:443–463. https://doi.org/10.1021/cb200519y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chuh KN, Batt AR, Pratt MR (2016) Chemical methods for encoding and decoding of posttranslational modifications. Cell Chem Biol 23:86–107. https://doi.org/10.1016/j.chembiol.2015.11.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Conibear AC (2020) Deciphering protein post-translational modifications using chemical biology tools. Nat Rev Chem 4:674–695. https://doi.org/10.1038/s41570-020-00223-8

    Article  CAS  Google Scholar 

  11. Dalhoff C, Lukinavicius G, Klimasăuskas S, Weinhold E (2006) Direct transfer of extended groups from synthetic cofactors by DNA methyltransferases. Nat Chem Biol 2:31–32. https://doi.org/10.1038/nchembio754

    Article  CAS  PubMed  Google Scholar 

  12. Peters W, Willnow S, Duisken M, Kleine H, Macherey T, Duncan KE, Litchfield DW, Luescher B, Weinhold E (2010) Enzymatic site-specific functionalization of protein methyltransferase substrates with alkynes for click labeling. Angew Chem Int Ed Engl 49:5170–5173. https://doi.org/10.1002/anie.201001240

    Article  CAS  PubMed  Google Scholar 

  13. Islam K, Chen Y, Wu H, Bothwell IR, Blum GJ, Zeng H, Dong A, Zheng W, Min J, Deng H, Luo M (2013) Defining efficient enzyme-cofactor pairs for bioorthogonal profiling of protein methylation. Proc Natl Acad Sci U S A 110:16778–16783. https://doi.org/10.1073/pnas.1216365110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Willnow S, Martin M, Lüscher B, Weinhold E (2012) A selenium-based click AdoMet analogue for versatile substrate labeling with wild-type protein methyltransferases. Chembiochem 13:1167–1173. https://doi.org/10.1002/cbic.201100781

    Article  CAS  PubMed  Google Scholar 

  15. Bothwell IR, Islam K, Chen Y, Zheng W, Blum G, Deng H, Luo M (2012) Se-adenosyl-L-selenomethionine cofactor analogue as a reporter of protein methylation. J Am Chem Soc 134:14905–14912. https://doi.org/10.1021/ja304782r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang R, Islam K, Liu Y, Zheng W, Tang H, Lailler N, Blum G, Deng H, Luo M (2013) Profiling genome-wide chromatin methylation with engineered posttranslation apparatus within living cells. J Am Chem Soc 135:1048–1056. https://doi.org/10.1021/ja309412s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dyer PN, Edayathumangalam RS, White CL, Bao Y, Chakravarthy S, Muthurajan UM, Luger K (2003) Reconstitution of nucleosome core particles from recombinant histones and DNA. Methods Enzymol 375:23–44. https://doi.org/10.1016/S0076-6879(03)75002-2

    Article  Google Scholar 

  18. Islam K, Zheng W, Yu H, Deng H, Luo M (2011) Expanding cofactor repertoire of protein lysine methyltransferase for substrate labeling. ACS Chem Biol 6:679–684. https://doi.org/10.1021/cb2000567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu H, Min J, Lunin VV, Antoshenko T, Dombrovski L, Zeng H, Allali-Hassani A, Campagna-Slater V, Vedadi M, Arrowsmith CH, Plotnikov AN, Schapira M (2010) Structural biology of human H3K9 methyltransferases. PLoS One 5:e8570. https://doi.org/10.1371/journal.pone.0008570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Guitot K, Scarabelli S, Drujon T, Bolbach G, Amoura M, Burlina F, Jeltsch A, Sagan S, Guianvarc’h D (2014) Label-free measurement of histone lysine methyltransferases activity by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Biochem 456:25–31. https://doi.org/10.1016/j.ab.2014.04.006

    Article  CAS  PubMed  Google Scholar 

  21. Valot B, Langella O, Nano E, Zivy M (2011) MassChroQ: a versatile tool for mass spectrometry quantification. Proteomics 11:3572–3577. https://doi.org/10.1002/pmic.201100120

    Article  CAS  PubMed  Google Scholar 

  22. Islam K, Bothwell I, Chen Y, Sengelaub C, Wang R, Deng H, Luo M (2012) Bioorthogonal profiling of protein methylation using azido derivative of S-adenosyl-L-methionine. J Am Chem Soc 134:5909–5915. https://doi.org/10.1021/ja2118333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the Ministère de la Recherche for a grant to A.D. We also thank Damarys Loew and Berangere Lombard from the Institut Curie Mass Spectrometry and Proteomics facility for help with proteomic study. The present work was supported by l’Agence Nationale de la Recherche (AMetHist, ANR-17-CE12-0028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Guianvarc’h .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Désert, A. et al. (2022). Characterization of SET-Domain Histone Lysine Methyltransferase Substrates Using a Cofactor S-Adenosyl-l-Methionine Surrogate. In: Margueron, R., Holoch, D. (eds) Histone Methyltransferases. Methods in Molecular Biology, vol 2529. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2481-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2481-4_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2480-7

  • Online ISBN: 978-1-0716-2481-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics