Skip to main content

In Vivo Bioluminescent Imaging of Bone Marrow-Derived Mesenchymal Stem Cells in Mice

  • Protocol
  • First Online:
Bioluminescence

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2525))

Abstract

Mesenchymal stem cells (MSCs) are multipotent adult stem cells present in multiple tissues, such as bone marrow, adipose tissue, umbilical cord, and amniotic fluid. MSCs can differentiate into multilineage cells under defined conditions in vitro and in vivo. MSCs have been shown to have therapeutic effects on various types of diseases. Noninvasive in vivo monitoring of MSCs is considered one of the important techniques for developing cell therapy. In this protocol, we introduce strategized MSCs derived from bone marrow (BM-MSCs) of knock-in mouse model expressing mCherry-Renilla luciferase (mCherry-RLuc) for noninvasive bioluminescence imaging (BLI) of injected BM-MSCs in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gangadaran P, Rajendran RL, Ahn B-C (2020) Application of in vivo imaging techniques for monitoring natural killer cell migration and tumor infiltration. Cancers 12:1318

    Article  CAS  Google Scholar 

  2. Rajendran RL, Jogalekar MP, Gangadaran P et al (2020) Noninvasive in vivo cell tracking using molecular imaging: a useful tool for developing mesenchymal stem cell-based cancer treatment. World J Stem Cells 12:1492–1510

    Article  Google Scholar 

  3. Weissman IL, Shizuru JA (2008) The origins of the identification and isolation of hematopoietic stem cells, and their capability to induce donor-specific transplantation tolerance and treat autoimmune diseases. Blood 112:3543–3553

    Article  CAS  Google Scholar 

  4. Murray IR, Péault B (2015) Q&A: mesenchymal stem cells — where do they come from and is it important? BMC Biol 13:99

    Article  Google Scholar 

  5. Friedenstein AJ, Chailakhjan RK, Lalykina KS (1970) The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 3:393–403

    CAS  PubMed  Google Scholar 

  6. Lee DE, Ayoub N, Agrawal DK (2016) Mesenchymal stem cells and cutaneous wound healing: novel methods to increase cell delivery and therapeutic efficacy. Stem Cell Res Ther 7:37

    Article  Google Scholar 

  7. Ukai R, Honmou O, Harada K et al (2007) Mesenchymal stem cells derived from peripheral blood protects against ischemia. J Neurotrauma 24:508–520

    Article  Google Scholar 

  8. Rowart P, Erpicum P, Detry O et al (2015) Mesenchymal stromal cell therapy in ischemia/reperfusion injury. J Immunol Res 2015:e602597

    Article  Google Scholar 

  9. Gjorgieva D, Zaidman N, Bosnakovski D (2013) Mesenchymal stem cells for anti-cancer drug delivery. Recent Pat Anticancer Drug Discov 8:310–318

    Article  CAS  Google Scholar 

  10. Oh EJ, Lee HW, Kalimuthu S et al (2018) In vivo migration of mesenchymal stem cells to burn injury sites and their therapeutic effects in a living mouse model. J Control Release 279:79–88

    Article  CAS  Google Scholar 

  11. Gangadaran P, Ahn B-C (2017) Molecular imaging: a useful tool for the development of natural killer cell-based immunotherapies. Front Immunol 8:1090

    Article  Google Scholar 

  12. Lee HW, Gangadaran P, Kalimuthu S et al (2016) Advances in molecular imaging strategies for in vivo tracking of immune cells. Biomed Res Int 2016:1946585

    PubMed  PubMed Central  Google Scholar 

  13. Kim JE, Kalimuthu S, Ahn B-C (2015) In vivo cell tracking with bioluminescence imaging. Nucl Med Mol Imaging 49:3–10

    Article  CAS  Google Scholar 

  14. Kim TK, Eberwine JH (2010) Mammalian cell transfection: the present and the future. Anal Bioanal Chem 397:3173–3178

    Article  CAS  Google Scholar 

  15. Woods N-B, Muessig A, Schmidt M et al (2003) Lentiviral vector transduction of NOD/SCID repopulating cells results in multiple vector integrations per transduced cell: risk of insertional mutagenesis. Blood 101:1284–1289

    Article  CAS  Google Scholar 

  16. Pfeifer A, Verma IM (2001) Gene therapy: promises and problems. Annu Rev Genomics Hum Genet 2:177–211

    Article  CAS  Google Scholar 

  17. Hacein-Bey-Abina S, Le Deist F, Carlier F et al (2002) Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N Engl J Med 346:1185–1193

    Article  CAS  Google Scholar 

  18. Yang Y-HK, Ogando CR, Wang See C et al (2018) Changes in phenotype and differentiation potential of human mesenchymal stem cells aging in vitro. Stem Cell Res Ther 9:131

    Article  CAS  Google Scholar 

  19. Sareen N, Sequiera GL, Chaudhary R et al (2018) Early passaging of mesenchymal stem cells does not instigate significant modifications in their immunological behavior. Stem Cell Res Ther 9:121

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2019R1I1A1A01061296, NRF-2019R1I1A3A01063308 and NRF-2019R1A6A3A13096414) and by a grant from the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health and Welfare, Republic of Korea (grant number: HI15C0001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byeong-Cheol Ahn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gangadaran, P., Oh, J.M., Rajendran, R.L., Ahn, BC. (2022). In Vivo Bioluminescent Imaging of Bone Marrow-Derived Mesenchymal Stem Cells in Mice. In: Kim, SB. (eds) Bioluminescence. Methods in Molecular Biology, vol 2525. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2473-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2473-9_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2472-2

  • Online ISBN: 978-1-0716-2473-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics