Skip to main content

Dairy Cattle Breeding

  • Reference work entry
  • First Online:
Animal Breeding and Genetics
  • 640 Accesses

  • Originally published in

Glossary

AI or Artificial inseminatio:

deposition of bull semen into the reproductive tract of a female animal, usually after earlier semen collection, dilution, freezing, and storage and subsequent thawing, although some pasture-based systems that is with high seasonal demand use fresh semen. Allows elite males to produce many more offspring than by natural mating.

Breeding goal/objective:

the set of traits which a breeding program is focused on to improve.

Genomic selection:

selection of breeding animals based on the use of genetic markers (usually single nucleotide polymorphisms or SNPs that are equally spread across the genome) to estimate breeding values. The relationships among SNP genotypes and animal phenotypes are first estimated in a “reference population” of either males with large numbers of daughters with measurements, or cows with their own measurement, in order to estimate breeding values of selection candidates from genotypes only or a combination of genotypes and...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

References in the Text

  1. Simm G, Pollott G, Mrode R, Houston R, Marshall K (2021) Genetic improvement of farmed animals. CABI, Wallingford. https://doi.org/10.1079/9781789241723.0000

    Book  Google Scholar 

  2. Cole JB, Eaglen SAE, Maltecca C, Mulder HA, Pryce JE (2020) The future of phenomics in dairy cattle breeding. Anim Front 10(2):37–44. https://doi.org/10.1093/af/vfaa007

    Article  PubMed  PubMed Central  Google Scholar 

  3. Henderson CR (1975) Best linear unbiased estimation and prediction under a selection model. Biometrics 31:423–447. https://doi.org/10.2307/2529430

    Article  PubMed  CAS  Google Scholar 

  4. Mrode RA (1996) Linear models for prediction of animal breeding values. CAB INTERNATIONAL, Wallingford

    Google Scholar 

  5. Lucy M (2001) Reproductive loss in high-producing dairy cattle: where will it end? J Dairy Sci 84(6):1277–1293

    Article  PubMed  CAS  Google Scholar 

  6. Lucy MC (2019) Symposium review: selection for fertility in the modern dairy cow—Current status and future direction for genetic selection. J Dairy Sci 102(4):3706–3721. https://doi.org/10.3168/jds.2018-15544

    Article  PubMed  CAS  Google Scholar 

  7. Berry D, Wall E, Pryce J (2014) Genetics and genomics of reproductive performance in dairy and beef cattle. Anim: Int J Anim Biosci 8(s1):105–121

    Article  Google Scholar 

  8. Rauw W, Kanis E, Noordhuizen-Stassen E, Grommers F (1998) Undesirable side effects of selection for high production efficiency in farm animals: a review. Livest Prod Sci 56(1):15–33

    Article  Google Scholar 

  9. Boichard D, Brochard M (2012) New phenotypes for new breeding goals in dairy cattle. Anim Int J Anim Biosci 6(04):544–550

    Article  CAS  Google Scholar 

  10. Martin-Collado D, Byrne T, Amer P, Santos B, Axford M, Pryce J (2015) Analyzing the heterogeneity of farmers’ preferences for improvements in dairy cow traits using farmer typologies. J Dairy Sci 98(6):4148–4161

    Article  PubMed  CAS  Google Scholar 

  11. Lopez-Villalobos N, Garrick DJ, Holmes CW, Blair HT, Spelman RJ (2000) Profitabilities of some mating systems for dairy herds in New Zealand. J Dairy Sci 83(1):144–153

    Article  PubMed  CAS  Google Scholar 

  12. Miglior F, Fleming A, Malchiodi F, Brito LF, Martin P, Baes CF (2017) A 100-year review: identification and genetic selection of economically important traits in dairy cattle. J Dairy Sci 100(12):10251–10271. https://doi.org/10.3168/jds.2017-12968

    Article  PubMed  CAS  Google Scholar 

  13. Mulder HA, Veerkamp RF, Ducro BJ, van Arendonk JAM, Bijma P (2006) Optimization of dairy cattle breeding programs for different environments with genotype by environment interaction. J Dairy Sci 89(5):1740–1752. https://doi.org/10.3168/jds.S0022-0302(06)72242-1

    Article  PubMed  CAS  Google Scholar 

  14. García-Ruiz A, Cole JB, VanRaden PM, Wiggans GR, Ruiz-López FJ, Van Tassell CP (2016) Changes in genetic selection differentials and generation intervals in US Holstein dairy cattle as a result of genomic selection. Proc Natl Acad Sci 113(28):E3995–E4004. https://doi.org/10.1073/pnas.1519061113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Goddard ME, Hayes BJ, Meuwissen TH (2010) Genomic selection in livestock populations. Genet Res 92(5–6):413–421. https://doi.org/10.1017/s0016672310000613

    Article  CAS  Google Scholar 

  16. Hayes B, Bowman P, Chamberlain A, Goddard M (2009) Invited review: genomic selection in dairy cattle: progress and challenges. J Dairy Sci 92(2):433–443

    Article  PubMed  CAS  Google Scholar 

  17. Hazel LN (1943) The genetic basis for constructing selection indexes. Genetics 28(6):476–490

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Byrne T, Santos B, Amer P, Martin-Collado D, Pryce J, Axford M (2016) New breeding objectives and selection indices for the Australian dairy industry. J Dairy Sci 99:8146–8167

    Article  PubMed  CAS  Google Scholar 

  19. Walsh SW, Williams EJ, Evans ACO (2011) A review of the causes of poor fertility in high milk producing dairy cows. Anim Reprod Sci 123(3):127–138. https://doi.org/10.1016/j.anireprosci.2010.12.001

    Article  PubMed  CAS  Google Scholar 

  20. Dekkers JCM, Gibson JP (1998) Applying breeding objectives to dairy cattle improvement. J Dairy Sci 81:19–35. https://doi.org/10.3168/jds.S0022-0302(98)70151-1

    Article  PubMed  CAS  Google Scholar 

  21. Pryce JE, Veerkamp RF (2001) The incorporation of fertility indices in genetic improvement programmes. BSAP Occasional Publication 26(1):237–249

    Google Scholar 

  22. Veerkamp R, Mv P (2019) Advances in dairy cattle breeding to improve longevity. In: van der Werf J, Pryce J (eds) Advances in breeding of dairy cattle. Burleigh Dodds Science Publishing Limited, pp 337–354

    Chapter  Google Scholar 

  23. Barkema HW, von Keyserlingk MAG, Kastelic JP, Lam TJGM, Luby C, Roy JP, LeBlanc SJ, Keefe GP, Kelton DF (2015) Invited review: changes in the dairy industry affecting dairy cattle health and welfare. J Dairy Sci 98(11):7426–7445. https://doi.org/10.3168/jds.2015-9377

    Article  PubMed  CAS  Google Scholar 

  24. Bell M, Eckard R, Pryce J (2012) Breeding dairy cows to reduce greenhouse gas emissions. IntechOpen

    Book  Google Scholar 

  25. Ducrocq V, Quaas RL, Pollak EJ, Casella G (1988) Length of productive life of dairy cows. 1. Justification of a Weibull model. J Dairy Sci 71(11):3061–3070. https://doi.org/10.3168/jds.S0022-0302(88)79906-3

    Article  Google Scholar 

  26. Veerkamp RF, Brotherstone S, Engel B, Meuwissen THE (2001) Analysis of censored survival data using random regression models. Anim Sci 72(1):1–10. https://doi.org/10.1017/S1357729800055491

    Article  Google Scholar 

  27. van Pelt ML, Ducrocq V, de Jong G, Calus MPL, Veerkamp RF (2016) Genetic changes of survival traits over the past 25 yr in Dutch dairy cattle. J Dairy Sci 99(12):9810–9819. https://doi.org/10.3168/jds.2016-11249

    Article  PubMed  CAS  Google Scholar 

  28. Boettcher PJ, Jairath LK, Dekkers JCM (1999) Comparison of methods for genetic evaluation of sires for survival of their daughters in the first three lactations. J Dairy Sci 82(5):1034–1044. https://doi.org/10.3168/jds.S0022-0302(99)75324-5

    Article  PubMed  CAS  Google Scholar 

  29. Veerkamp RF, Hill WG, Stott AW, Brotherstone S, Simm G (1995) Selection for longevity and yield in dairy cows using transmitting abilities for type and yield. Anim Sci 61(2):189–197. https://doi.org/10.1017/S1357729800013710

    Article  Google Scholar 

  30. Whay HR, Shearer JK (2017) The impact of lameness on welfare of the dairy cow. The veterinary clinics of North America. Food Anim Pract 33(2):153–164. https://doi.org/10.1016/j.cvfa.2017.02.008

    Article  Google Scholar 

  31. Cole JB, VanRaden PM (2018) Symposium review: possibilities in an age of genomics: the future of selection indices1. J Dairy Sci 101(4):3686–3701. https://doi.org/10.3168/jds.2017-13335

    Article  PubMed  CAS  Google Scholar 

  32. Mrode R, Swanson G (1996) Genetic and statistical properties of somatic cell count and its suitability as an indirect means of reducing the incidence of mastitis in dairy cattle. Animal Breeding Abstracts (United Kingdom)

    Google Scholar 

  33. Abdelsayed M, Haile-Mariam M, Pryce JE (2017) Genetic parameters for health traits using data collected from genomic information nucleus herds. J Dairy Sci 100:9643–9655. https://doi.org/10.3168/jds.2017-12960

    Article  PubMed  CAS  Google Scholar 

  34. Pilla R, Malvisi M, Snel GGM, Schwarz D, König S, Czerny CP, Piccinini R (2013) Differential cell count as an alternative method to diagnose dairy cow mastitis. J Dairy Sci 96(3):1653–1660. https://doi.org/10.3168/jds.2012-6298

    Article  PubMed  CAS  Google Scholar 

  35. Norberg E (2005) Electrical conductivity of milk as a phenotypic and genetic indicator of bovine mastitis: a review. Livest Prod Sci 96(2):129–139

    Article  Google Scholar 

  36. Soyeurt H, Colinet FG, Arnould VMR, Dardenne P, Bertozzi C, Renaville R, Portetelle D, Gengler N (2007) Genetic variability of lactoferrin content estimated by mid-infrared spectrometry in bovine milk. J Dairy Sci 90(9):4443–4450. https://doi.org/10.3168/jds.2006-827

    Article  PubMed  CAS  Google Scholar 

  37. Van der Waaij E, Holzhauer M, Ellen E, Kamphuis C, De Jong G (2005) Genetic parameters for claw disorders in Dutch dairy cattle and correlations with conformation traits. J Dairy Sci 88(10):3672–3678

    Article  PubMed  Google Scholar 

  38. Ødegård C, Svendsen M, Heringstad B (2013) Genetic analyses of claw health in Norwegian Red cows. J Dairy Sci 96(11):7274–7283

    Article  PubMed  Google Scholar 

  39. Buch LH, Sørensen AC, Lassen J, Berg P, Eriksson J-Å, Jakobsen J, Sørensen MK (2011) Hygiene-related and feed-related hoof diseases show different patterns of genetic correlations to clinical mastitis and female fertility. J Dairy Sci 94(3):1540–1551

    Article  PubMed  CAS  Google Scholar 

  40. Egger-Danner C, Nielsen P, Fiedler A, Müller K, Fjeldaas T, Döpfer D, Daniel V, Bergsten C, Cramer G, Christen A (2014) ICAR Claw Health Atlas. ICAR Technical Series (18)

    Google Scholar 

  41. Boelling D, Pollott G (1998) Locomotion, lameness, hoof and leg traits in cattle II: genetic relationships and breeding values. Livest Prod Sci 54(3):205–215

    Article  Google Scholar 

  42. De la Paz JM (2008) Using antibody and cell-mediated immune response to test antigens in periparturient dairy cows as a measure of disease resistance. University of Florida

    Google Scholar 

  43. Thompson-Crispi K, Hine B, Quinton M, Miglior F, Mallard B (2012) Short communication: association of disease incidence and adaptive immune response in Holstein dairy cows. J Dairy Sci 95(7):3888–3893

    Article  PubMed  CAS  Google Scholar 

  44. Hernandez A, Quinton M, Miglior F, Mallard BA (2006) Genetic parameters of dairy cattle immune response traits. In: World Congress on Genetics Applied to Livestock Production: Belo Horizonte, MG, Brazil

    Google Scholar 

  45. Thompson-Crispi KA, Sewalem A, Miglior F, Mallard BA (2012) Genetic parameters of adaptive immune response traits in Canadian Holsteins. J Dairy Sci 95:401–409

    Article  PubMed  CAS  Google Scholar 

  46. Wilkie B, Mallard B (1999) Selection for high immune response: an alternative approach to animal health maintenance? Vet Immunol Immunopathol 72:231–235

    Article  PubMed  CAS  Google Scholar 

  47. De Marchi M, Toffanin V, Cassandro M, Penasa M (2014) Invited review: mid-infrared spectroscopy as phenotyping tool for milk traits. J Dairy Sci 97(3):1171–1186

    Article  PubMed  Google Scholar 

  48. Luke TDW, Rochfort S, Wales WJ, Bonfatti V, Marett L, Pryce JE (2019) Metabolic profiling of early-lactation dairy cows using milk mid-infrared spectra. J Dairy Sci 102(2):1747–1760. https://doi.org/10.3168/jds.2018-15103

    Article  PubMed  CAS  Google Scholar 

  49. Luke TDW, Nguyen TTT, Rochfort S, Wales WJ, Richardson CM, Abdelsayed M, Pryce JE (2019) Genomic prediction of serum biomarkers of health in early lactation. J Dairy Sci 102(12):11142–11152. https://doi.org/10.3168/jds.2019-17127

    Article  PubMed  CAS  Google Scholar 

  50. van den Berg I, Ho PN, Luke TDW, Haile-Mariam M, Bolormaa S, Pryce JE (2021) The use of milk mid-infrared spectroscopy to improve genomic prediction accuracy of serum biomarkers. J Dairy Sci 104(2):2008–2017. https://doi.org/10.3168/jds.2020-19468

    Article  PubMed  CAS  Google Scholar 

  51. Colditz IG, Hine BC (2016) Resilience in farm animals: biology, management, breeding and implications for animal welfare. Anim Prod Sci 56:1961–1983

    Article  Google Scholar 

  52. Rauw WM, Gomez-Raya L (2015) Genotype by environment interaction and breeding for robustness in livestock. Front Genet 6:310

    Article  PubMed  PubMed Central  Google Scholar 

  53. Misztal I (2017) Breeding and genetics symposium: resilience and lessons from studies in genetics of heat stress. J Anim Sci 95:1780–1787

    PubMed  CAS  Google Scholar 

  54. Wechsler B, Lea SEG (2007) Adaptation by learning: its significance for farmed aniaml husbandry. Appl Anim Behav Sci 108:197–214

    Article  Google Scholar 

  55. Boissy A, Manteuffel G, Jensen MB, Moe RO, Spruijt B, Keeling LJ, Winckler C, Forkman B, Dimitrov I, Langbein J, Bakken M, Veissier I, Aubert A (2007) Assessment of positive emotions in animals to improve their welfare. Physiol Behav 92:375–397

    Article  PubMed  CAS  Google Scholar 

  56. Poppe M, Bonekamp G, van Pelt ML, Mulder HA (2021) Genetic analysis of resilience indicators based on milk yield records in different lactations and at different lactation stages. J Dairy Sci 104(2):1967–1981. https://doi.org/10.3168/jds.2020-19245

    Article  PubMed  CAS  Google Scholar 

  57. Carabaño MJ, Ramón M, Menéndez-Buxadera A, Molina A, Díaz C (2019) Selecting for heat tolerance. Anim Front 9(1):62–68. https://doi.org/10.1093/af/vfy033

    Article  PubMed  PubMed Central  Google Scholar 

  58. Polsky L, von Keyserlingk MAG (2017) Invited review: effects of heat stress on dairy cattle welfare. J Dairy Sci 100(11):8645–8657. https://doi.org/10.3168/jds.2017-12651

    Article  PubMed  CAS  Google Scholar 

  59. Ravagnolo O, Misztal I (2000) Genetic component of heat stress in dairy cattle, parameter estimation. J Dairy Sci 83(9):2126–2130. https://doi.org/10.3168/jds.S0022-0302(00)75095-8

    Article  PubMed  CAS  Google Scholar 

  60. Nguyen TT, Bowman PJ, Haile-Mariam M, Pryce JE, Hayes BJ (2016) Genomic selection for tolerance to heat stress in Australian dairy cattle. J Dairy Sci 99(4):2849–2862

    Article  PubMed  CAS  Google Scholar 

  61. Nguyen TTT, Bowman PJ, Haile-Mariam M, Nieuwhof GJ, Hayes BJ, Pryce JE (2017) Short communication: implementation of a breeding value for heat tolerance in Australian dairy cattle. J Dairy Sci 100(9):7362–7367. https://doi.org/10.3168/jds.2017-12898

    Article  PubMed  CAS  Google Scholar 

  62. Cheruiyot EK, Haile-Mariam M, Cocks BG, MacLeod IM, Xiang R, Pryce JE (2021) New loci and neuronal pathways for resilience to heat stress in cattle. Sci Rep 11:16619. https://doi.org/10.1038/s41598-021-95816-8

  63. Danielsson R, Dicksved J, Sun L, Gonda H, Müller B, Schnürer A, Bertilsson J (2017) Methane production in dairy cows correlates with rumen methanogenic and bacterial community structure. Front Microbiol 8:226. https://doi.org/10.3389/fmicb.2017.00226

    Article  PubMed  PubMed Central  Google Scholar 

  64. de Haas Y, Pszczola M, Soyeurt H, Wall E, Lassen J (2017) Invited review: phenotypes to genetically reduce greenhouse gas emissions in dairying. J Dairy Sci 100(2):855–870. https://doi.org/10.3168/jds.2016-11246

    Article  PubMed  CAS  Google Scholar 

  65. Garnsworthy PC, Difford GF, Bell MJ, Bayat AR, Huhtanen P, Kuhla B, Lassen J, Peiren N, Pszczola M, Sorg D, Visker MHPW, Yan T (2019) Comparison of methods to measure methane for use in genetic evaluation of dairy cattle. Animals 9(10):837

    Article  PubMed Central  Google Scholar 

  66. Richardson CM, Nguyen TTT, Abdelsayed M, Moate PJ, Williams SRO, Chud TCS, Schenkel FS, Goddard ME, van den Berg I, Cocks BG, Marett LC, Wales WJ, Pryce JE (2021) Genetic parameters for methane emission traits in Australian dairy cows. J Dairy Sci 104(1):539–549. https://doi.org/10.3168/jds.2020-18565

    Article  PubMed  CAS  Google Scholar 

  67. Breider IS, Wall E, Garnsworthy PC (2019) Short communication: heritability of methane production and genetic correlations with milk yield and body weight in Holstein-Friesian dairy cows. J Dairy Sci 102(8):7277–7281. https://doi.org/10.3168/jds.2018-15909

    Article  PubMed  CAS  Google Scholar 

  68. Garnsworthy PC (2004) The environmental impact of fertility in dairy cows: a modelling approach to predict methane and ammonia emissions. Anim Feed Sci Technol 112(1):211–223. https://doi.org/10.1016/j.anifeedsci.2003.10.011

    Article  CAS  Google Scholar 

  69. Bell M, Eckard R, Haile-Mariam M, Pryce J (2013) The effect of changing cow production and fitness traits on net income and greenhouse gas emissions from Australian dairy systems. J Dairy Sci 96(12):7918–7931

    Article  PubMed  CAS  Google Scholar 

  70. De Haas Y, Windig J, Calus M, Dijkstra J, De Haan M, Bannink A, Veerkamp R (2011) Genetic parameters for predicted methane production and potential for reducing enteric emissions through genomic selection. J Dairy Sci 94(12):6122–6134

    Article  PubMed  Google Scholar 

  71. Richardson CM, Amer PR, Hely FS, van den Berg I, Pryce JE (2021) Estimating methane coefficients to predict the environmental impact of traits in the Australian dairy breeding program. J Dairy Sci 104:10979–10990. https://doi.org/10.3168/jds.2021-20348

    Article  PubMed  CAS  Google Scholar 

  72. Wallace RJ, Sasson G, Garnsworthy PC, Tapio I, Gregson E, Bani P, Huhtanen P, Bayat AR, Strozzi F, Biscarini F, Snelling TJ, Saunders N, Potterton SL, Craigon J, Minuti A, Trevisi E, Callegari ML, Cappelli FP, Cabezas-Garcia EH, Vilkki J, Pinares-Patino C, Fliegerová KO, Mrázek J, Sechovcová H, Kopečný J, Bonin A, Boyer F, Taberlet P, Kokou F, Halperin E, Williams JL, Shingfield KJ, Mizrahi I (2019) A heritable subset of the core rumen microbiome dictates dairy cow productivity and emissions. Sci Adv 5(7):eaav8391. https://doi.org/10.1126/sciadv.aav8391

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Johnson KA, Johnson DE (1995) Methane emissions from cattle. J Anim Sci 73(8):2483–2492. https://doi.org/10.2527/1995.7382483x

    Article  PubMed  CAS  Google Scholar 

  74. Berry D, Crowley J (2013) Cell biology symposium: genetics of feed efficiency in dairy and beef cattle. J Anim Sci 91(4):1594–1613

    Article  PubMed  CAS  Google Scholar 

  75. Pryce J, Gonzalez-Recio O, Nieuwhof G, Wales W, Coffey M, Hayes B, Goddard M (2015) Hot topic: definition and implementation of a breeding value for feed efficiency in dairy cows. J Dairy Sci 98:7340–7350

    Article  PubMed  CAS  Google Scholar 

  76. von Keyserlingk MAG, Weary DM (2017) A 100-year review: animal welfare in the Journal of Dairy Science—The first 100 years. J Dairy Sci 100(12):10432–10444. https://doi.org/10.3168/jds.2017-13298

    Article  CAS  Google Scholar 

  77. Nielsen H-M, Christensen LG, Groen A (2005) Derivation of sustainable breeding goals for dairy cattle using selection index theory. J Dairy Sci 88(5):1882–1890

    Article  PubMed  CAS  Google Scholar 

  78. Brito LF, Oliveira HR, McConn BR, Schinckel AP, Arrazola A, Marchant-Forde JN, Johnson JS (2020) Large-scale phenotyping of livestock welfare in commercial production systems: a new Frontier in animal breeding. Front Genet 11:793–793. https://doi.org/10.3389/fgene.2020.00793

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Bikker JP, van Laar H, Rump P, Doorenbos J, van Meurs K, Griffioen GM, Dijkstra J (2014) Technical note: evaluation of an ear-attached movement sensor to record cow feeding behavior and activity. J Dairy Sci 97(5):2974–2979. https://doi.org/10.3168/jds.2013-7560

    Article  PubMed  CAS  Google Scholar 

  80. McParland S, Kearney JF, Rath M, Berry DP (2007) Inbreeding effects on milk production, calving performance, fertility, and conformation in Irish Holstein-Friesians. J Dairy Sci 90(9):4411–4419. https://doi.org/10.3168/jds.2007-0227

    Article  CAS  Google Scholar 

  81. Baes CF, Makanjuola BO, Miglior F, Marras G, Howard JT, Fleming A, Maltecca C (2019) Symposium review: the genomic architecture of inbreeding: how homozygosity affects health and performance. J Dairy Sci 102(3):2807–2817. https://doi.org/10.3168/jds.2018-15520

    Article  PubMed  CAS  Google Scholar 

  82. Kipp S, Segelke D, Schierenbeck S, Reinhardt F, Reents R, Wurmser C, Pausch H, Fries R, Thaller G, Tetens J, Pott J, Haas D, Raddatz BB, Hewicker-Trautwein M, Proios I, Schmicke M, Grünberg W (2016) Identification of a haplotype associated with cholesterol deficiency and increased juvenile mortality in Holstein cattle. J Dairy Sci 99(11):8915–8931. https://doi.org/10.3168/jds.2016-11118

    Article  PubMed  CAS  Google Scholar 

  83. Makanjuola BO, Miglior F, Abdalla EA, Maltecca C, Schenkel FS, Baes CF (2020) Effect of genomic selection on rate of inbreeding and coancestry and effective population size of Holstein and Jersey cattle populations. J Dairy Sci 103(6):5183–5199. https://doi.org/10.3168/jds.2019-18013

    Article  PubMed  CAS  Google Scholar 

  84. VanRaden PM, Olson KM, Wiggans GR, Cole JB, Tooker ME (2011) Genomic inbreeding and relationships among Holsteins, Jerseys, and Brown Swiss. J Dairy Sci 94(11):5673–5682. https://doi.org/10.3168/jds.2011-4500

    Article  PubMed  CAS  Google Scholar 

  85. Doublet A-C, Croiseau P, Fritz S, Michenet A, Hozé C, Danchin-Burge C, Laloë D, Restoux G (2019) The impact of genomic selection on genetic diversity and genetic gain in three French dairy cattle breeds. Genet Sel Evol 51(1):52. https://doi.org/10.1186/s12711-019-0495-1

    Article  PubMed  PubMed Central  Google Scholar 

  86. Bjelland DW, Weigel KA, Vukasinovic N, Nkrumah JD (2013) Evaluation of inbreeding depression in Holstein cattle using whole-genome SNP markers and alternative measures of genomic inbreeding. J Dairy Sci 96(7):4697–4706. https://doi.org/10.3168/jds.2012-6435

    Article  PubMed  CAS  Google Scholar 

  87. Pryce J, Goddard M, Raadsma H, Hayes B (2010) Deterministic models of breeding scheme designs that incorporate genomic selection. J Dairy Sci 93(11):5455–5466

    Article  PubMed  CAS  Google Scholar 

  88. Pryce JE, Nguyen TTT, Axford M, Nieuwhof G, Shaffer M (2018) Symposium review: building a better cow: the Australian experience and future perspectives. J Dairy Sci 101(4):3702–3713. https://doi.org/10.3168/jds.2017-13377

    Article  PubMed  CAS  Google Scholar 

  89. Lasser J, Matzhold C, Egger-Danner C, Fuerst-Waltl B, Steininger F, Wittek T, Klimek P (2021) Integrating diverse data sources to predict disease risk in dairy cattle–a machine learning approach. J Anim Sci 99(11). https://doi.org/10.1093/jas/skab294

Books and Reviews (Further Reading)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennie E. Pryce .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pryce, J.E. (2023). Dairy Cattle Breeding. In: Spangler, M.L. (eds) Animal Breeding and Genetics. Encyclopedia of Sustainability Science and Technology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-2460-9_1117

Download citation

Publish with us

Policies and ethics