Skip to main content

Using Single-Molecule Fluorescence Microscopy to Uncover Neuronal Vulnerability to Protein Damage

  • Protocol
  • First Online:
Neuronal Cell Death

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2515))

Abstract

Neurodegenerative disorders (NDs) are diverse age-related conditions also described as “conformational diseases.” The hallmark of NDs is the accumulation of disease-specific proteins as toxic misfolded aggregates in some areas of the brain. They lead to the loss of protein homeostasis (proteostasis) that causes neuronal dysfunction and death. A potential therapeutic strategy for NDs is to prevent the accumulation of misfolded proteins by activating the heat shock response (HSR). The HSR maintains proteostasis through the upregulation of heat shock proteins (HSPs), molecular chaperones that recognize misfolded proteins, and either refold them to their functional conformations and/or target them for degradation. However, how to manipulate the expression of HSPs to obtain a therapeutic effect in neurons remains unclear. Furthermore, the regulation of the HSR in neurons is more complex than what we have learned from culturing somatic nonneuronal cells. This chapter describes a method to investigate the induction of HSP70 in primary hippocampal neurons using single-molecule fluorescence in situ hybridization (smFISH). Quantification of smFISH provides the means to analyze neuron-to-neuron variability in the activation of the HSR and enables us to study the transcriptional induction and localization of HSP70 mRNA in primary neurons. This information might be critical to find the druggable steps for developing effective therapies to treat age-related NDs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hebert LE, Weuve J, Scherr PA et al (2013) Alzheimer disease in the United States (2010-2050) estimated using the 2010 census. Neurology 80:1778–1783

    Article  Google Scholar 

  2. Brandvold KR, Morimoto RI (2015) The chemical biology of molecular chaperones--implications for modulation of proteostasis. J Mol Biol 427:2931–2947

    Article  CAS  Google Scholar 

  3. Gidalevitz T, Prahlad V, Morimoto RI (2011) The stress of protein misfolding: from single cells to multicellular organisms. Cold Spring Harb Perspect Biol 3:a009704

    Article  Google Scholar 

  4. Hoshino T, Murao N, Namba T et al (2011) Suppression of Alzheimer’s disease-related phenotypes by expression of heat shock protein 70 in mice. J Neurosci 31:5225–5234

    Article  CAS  Google Scholar 

  5. Bobkova NV, Garbuz DG, Nesterova I et al (2014) Therapeutic effect of exogenous hsp70 in mouse models of Alzheimer’s disease. J Alzheimers Dis 38:425–435

    Article  Google Scholar 

  6. Campanella C, Pace A, Caruso Bavisotto C et al (2018) Heat shock proteins in Alzheimer’s disease: role and targeting. Int J Mol Sci 19:2603

    Article  Google Scholar 

  7. Evgen’ev MB, Krasnov GS, Nesterova IV et al (2017) Molecular mechanisms underlying neuroprotective effect of intranasal administration of human Hsp70 in mouse model of Alzheimer’s disease. J Alzheimers Dis 59:1415–1426

    Article  Google Scholar 

  8. Batulan Z, Shinder GA, Minotti S et al (2003) High threshold for induction of the stress response in motor neurons is associated with failure to activate HSF1. J Neurosci 23:5789–5798

    Article  CAS  Google Scholar 

  9. Labbadia J, Cunliffe H, Weiss A et al (2011) Altered chromatin architecture underlies progressive impairment of the heat shock response in mouse models of Huntington disease. J Clin Invest 121:3306–3319

    Article  CAS  Google Scholar 

  10. Balchin D, Hayer-Hartl M, Hartl FU (2016) In vivo aspects of protein folding and quality control. Science 353:aac4354

    Article  Google Scholar 

  11. Sinnige T, Yu A, Morimoto RI (2020) Challenging proteostasis: role of the chaperone network to control aggregation-prone proteins in human disease. Adv Exp Med Biol 1243:53–68

    Article  CAS  Google Scholar 

  12. San Gil R, Ooi L, Yerbury JJ et al (2017) The heat shock response in neurons and astroglia and its role in neurodegenerative diseases. Mol Neurodegener 12:65

    Article  Google Scholar 

  13. Penke B, Bogár F, Crul T et al (2018) Heat shock proteins and autophagy pathways in neuroprotection: from molecular bases to pharmacological interventions. Int J Mol Sci 19:325

    Article  Google Scholar 

  14. Lindquist S (1992) Heat-shock proteins and stress tolerance in microorganisms. Curr Opin Genet Dev 2:748–755

    Article  CAS  Google Scholar 

  15. DiDomenico BJ, Bugaisky GE, Lindquist S (1982) The heat shock response is self-regulated at both the transcriptional and posttranscriptional levels. Cell 31:593–603

    Article  CAS  Google Scholar 

  16. Theodorakis NG, Morimoto RI (1987) Posttranscriptional regulation of hsp70 expression in human cells: effects of heat shock, inhibition of protein synthesis, and adenovirus infection on translation and mRNA stability. Mol Cell Biol 7:4357–4368

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631–677

    Article  CAS  Google Scholar 

  18. Cuesta R, Laroia G, Schneider RJ (2000) Chaperone hsp27 inhibits translation during heat shock by binding eIF4G and facilitating dissociation of cap-initiation complexes. Genes Dev 14:1460–1470

    Article  CAS  Google Scholar 

  19. Guertin MJ, Lis JT (2010) Chromatin landscape dictates HSF binding to target DNA elements. PLoS Genet 6:e1001114

    Article  Google Scholar 

  20. Anckar J, Sistonen L (2011) Regulation of HSF1 function in the heat stress response: implications in aging and disease. Annu Rev Biochem 80:1089–1115

    Article  CAS  Google Scholar 

  21. Turturici G, Sconzo G, Geraci F (2011) Hsp70 and its molecular role in nervous system diseases. Biochem Res Int 2011:618127

    Article  Google Scholar 

  22. Vera M, Pani B, Griffiths LA et al (2014) The translation elongation factor eEF1A1 couples transcription to translation during heat shock response. eLife 3:e03164

    Article  Google Scholar 

  23. Shamovsky I, Ivannikov M, Kandel ES et al (2006) RNA-mediated response to heat shock in mammalian cells. Nature 440:556–560

    Article  CAS  Google Scholar 

  24. Kuta R, Larochelle N, Fernandez M et al (2020) Depending on the stress, histone deacetylase inhibitors act as heat shock protein co-inducers in motor neurons and potentiate arimoclomol, exerting neuroprotection through multiple mechanisms in ALS models. Cell Stress Chaperones 25:173–191

    Article  CAS  Google Scholar 

  25. Nishimura RN, Dwyer BE, Clegg K et al (1991) Comparison of the heat shock response in cultured cortical neurons and astrocytes. Brain Res Mol Brain Res 9:39–45

    Article  CAS  Google Scholar 

  26. Vera M, Biswas J, Senecal A et al (2016) Single-cell and single-molecule analysis of gene expression regulation. Annu Rev Genet 50:267–291

    Article  CAS  Google Scholar 

  27. Hocine S, Vera M, Zenklusen D et al (2015) Promoter-autonomous functioning in a controlled environment using single molecule FISH. Sci Rep 5:9934

    Article  Google Scholar 

  28. Mueller F, Senecal A, Tantale K et al (2013) FISH-quant: automatic counting of transcripts in 3D FISH images. Nat Methods 10:277–278

    Article  CAS  Google Scholar 

  29. Thompson PM, Hayashi KM, Dutton RA et al (2007) Tracking Alzheimer’s disease. Ann N Y Acad Sci 1097:183–214

    Article  Google Scholar 

  30. Seibenhener ML, Wooten MW (2012) Isolation and culture of hippocampal neurons from prenatal mice. J Vis Exp (65):3634

    Google Scholar 

  31. Shim JY, Lee BH, Park HY (2019) Visualization of single mRNAs in live neurons. Methods Mol Biol 2038:47–61

    Article  CAS  Google Scholar 

  32. Eliscovich C, Shenoy SM, Singer RH (2017) Imaging mRNA and protein interactions within neurons. Proc Natl Acad Sci U S A 114:E1875–E1884

    Article  CAS  Google Scholar 

  33. Reback J, McKinney W, Jbrockmendel et al (2020) pandas-dev/pandas: Pandas 1.1.0, Zenodo

    Google Scholar 

  34. Waskom M, Botvinnik O, O’Kane D et al (2017) Mwaskom/Seaborn: V0.8.1 (September 2017), Zenodo

    Google Scholar 

  35. Caswell TA, Droettboom M, Hunter J et al (2019) matplotlib/matplotlib: REL: v3.1.1, Zenodo

    Google Scholar 

  36. McKinney W (2010) Data structures for statistical computing in Python. Presented at the Python in Science Conference, Austin

    Google Scholar 

  37. Sato H, Das S, Singer RH et al (2020) Imaging of DNA and RNA in living eukaryotic cells to reveal spatiotemporal dynamics of gene expression. Annu Rev Biochem 89:159–187

    Article  CAS  Google Scholar 

  38. Pichon X, Lagha M, Mueller F et al (2018) A growing toolbox to image gene expression in single cells: sensitive approaches for demanding challenges. Mol Cell 71:468–480

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant AG05583 and NSERC grant RGPIN-2019-04767 to M.V.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Vera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jacob-Tomas, S., Alagar Boopathy, L.R., Vera, M. (2022). Using Single-Molecule Fluorescence Microscopy to Uncover Neuronal Vulnerability to Protein Damage. In: Jahani-Asl, A. (eds) Neuronal Cell Death. Methods in Molecular Biology, vol 2515. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2409-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2409-8_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2408-1

  • Online ISBN: 978-1-0716-2409-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics