Skip to main content

Extending and Running the Mosquito Small RNA Genomics Resource Pipeline

  • Protocol
  • First Online:
piRNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2509))

Abstract

The Mosquito Small RNA Genomics (MSRG) resource is a repository of analyses on the small RNA transcriptomes of mosquito cell cultures and somatic and gonadal tissues. This resource allows for comparing the regulation dynamics of small RNAs generated from transposons and viruses across mosquito species. This chapter covers the procedures to set up the MSRG resource pipeline as a new installation by detailing the necessary collection of genome reference and annotation files and lists of microRNAs (miRNAs) hairpin sequences, transposon repeats consensus sequences, and virus genome sequences. Proper execution of the MSRG resource pipeline yields outputs amenable to biologists to further analyze with desktop and spreadsheet software to gain insights into the balance between arthropod endogenous small RNA populations and the proportions of virus-derived small RNAs that include Piwi-interacting RNAs (piRNAs) and endogenous small interfering RNAs (siRNAs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gamez S, Srivastav S, Akbari OS, Lau NC (2020) Diverse defenses: a perspective comparing dipteran Piwi-piRNA pathways. Cell 9(10):2180. https://doi.org/10.3390/cells9102180

    Article  CAS  Google Scholar 

  2. Leinonen R, Sugawara H, Shumway M (2011) International nucleotide sequence database C. the sequence read archive. Nucleic Acids Res 39(Database issue):D19–D21. https://doi.org/10.1093/nar/gkq1019

    Article  CAS  PubMed  Google Scholar 

  3. Brackney DE, Scott JC, Sagawa F, Woodward JE, Miller NA, Schilkey FD et al (2010) C6/36 Aedes albopictus cells have a dysfunctional antiviral RNA interference response. PLoS Negl Trop Dis 4(10):e856. https://doi.org/10.1371/journal.pntd.0000856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Adelman ZN, Anderson MA, Liu M, Zhang L, Myles KM (2012) Sindbis virus induces the production of a novel class of endogenous siRNAs in Aedes aegypti mosquitoes. Insect Mol Biol 21(3):357–368. https://doi.org/10.1111/j.1365-2583.2012.01141.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vodovar N, Bronkhorst AW, van Cleef KW, Miesen P, Blanc H, van Rij RP et al (2012) Arbovirus-derived piRNAs exhibit a ping-pong signature in mosquito cells. PLoS One 7(1):e30861. https://doi.org/10.1371/journal.pone.0030861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schnettler E, Donald CL, Human S, Watson M, Siu RWC, McFarlane M et al (2013) Knockdown of piRNA pathway proteins results in enhanced Semliki Forest virus production in mosquito cells. J Gen Virol 94(Pt 7):1680–1689. https://doi.org/10.1099/vir.0.053850-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu Y, Zhou Y, Wu J, Zheng P, Li Y, Zheng X et al (2015) The expression profile of Aedes albopictus miRNAs is altered by dengue virus serotype-2 infection. Cell Biosci 5:16. https://doi.org/10.1186/s13578-015-0009-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Miesen P, Girardi E, van Rij RP (2015) Distinct sets of PIWI proteins produce arbovirus and transposon-derived piRNAs in Aedes aegypti mosquito cells. Nucleic Acids Res 43(13):6545–6556. https://doi.org/10.1093/nar/gkv590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Saldana MA, Etebari K, Hart CE, Widen SG, Wood TG, Thangamani S et al (2017) Zika virus alters the microRNA expression profile and elicits an RNAi response in Aedes aegypti mosquitoes. PLoS Negl Trop Dis 11(7):e0005760. https://doi.org/10.1371/journal.pntd.0005760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Varjak M, Maringer K, Watson M, Sreenu VB, Fredericks AC, Pondeville E et al (2017) Aedes aegypti Piwi4 is a noncanonical PIWI protein involved in antiviral responses. mSphere 2(3):e00144-17. https://doi.org/10.1128/mSphere.00144-17

    Article  PubMed  PubMed Central  Google Scholar 

  11. Halbach R, Miesen P, Joosten J, Taşköprü E, Rondeel I, Pennings B et al (2020) A satellite repeat-derived piRNA controls embryonic development of Aedes. Nature 580(7802):274–277. https://doi.org/10.1038/s41586-020-2159-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ma Q, Srivastav SP, Gamez S, Dayama G, Feitosa-Suntheimer F, Patterson EI et al (2021) A mosquito small RNA genomics resource reveals dynamic evolution and host responses to viruses and transposons. Genome Res 31(3):512–528. https://doi.org/10.1101/gr.265157.120

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chakraborty M, Ramaiah A, Adolfi A, Halas P, Kaduskar B, Ngo LT et al (2021) Hidden genomic features of an invasive malaria vector, Anopheles stephensi, revealed by a chromosome-level genome assembly. BMC Biol 19(1):28. https://doi.org/10.1186/s12915-021-00963-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Main BJ, Marcantonio M, Johnston JS, Rasgon JL, Brown CT, Barker CM (2021) Whole-genome assembly of Culex tarsalis. G3 (Bethesda) 11(2):jkaa063. https://doi.org/10.1093/g3journal/jkaa063

    Article  CAS  Google Scholar 

  15. Chirn GW, Rahman R, Sytnikova YA, Matts JA, Zeng M, Gerlach D et al (2015) Conserved piRNA expression from a distinct set of piRNA cluster loci in eutherian mammals. PLoS Genet 11(11):e1005652. https://doi.org/10.1371/journal.pgen.1005652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fujita PA, Rhead B, Zweig AS, Hinrichs AS, Karolchik D, Cline MS et al (2011) The UCSC Genome Browser database: update 2011. Nucleic Acids Res 39(Database issue):D876–D882. https://doi.org/10.1093/nar/gkq963

    Article  CAS  PubMed  Google Scholar 

  17. Wheeler TJ, Clements J, Eddy SR, Hubley R, Jones TA, Jurka J et al (2013) Dfam: a database of repetitive DNA based on profile hidden Markov models. Nucleic Acids Res 41(Database issue):D70–D82. https://doi.org/10.1093/nar/gks1265

    Article  CAS  PubMed  Google Scholar 

  18. Giraldo-Calderon GI, Emrich SJ, MacCallum RM, Maslen G, Dialynas E, Topalis P et al (2015) VectorBase: an updated bioinformatics resource for invertebrate vectors and other organisms related with human diseases. Nucleic Acids Res 43(Database issue):D707–D713. https://doi.org/10.1093/nar/gku1117

    Article  CAS  PubMed  Google Scholar 

  19. Langmead B (2010) Aligning short sequencing reads with bowtie. Curr Protoc Bioinformatics. Chapter 11:Unit 11 7. https://doi.org/10.1002/0471250953.bi1107s32

  20. Chen C, Khaleel SS, Huang H, Wu CH (2014) Software for pre-processing Illumina next-generation sequencing short read sequences. Source Code Biol Med 9:8. https://doi.org/10.1186/1751-0473-9-8

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kozomara A, Birgaoanu M, Griffiths-Jones S (2019) miRBase: from microRNA sequences to function. Nucleic Acids Res 47(D1):D155–DD62. https://doi.org/10.1093/nar/gky1141

    Article  CAS  PubMed  Google Scholar 

  22. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with bowtie 2. Nat Methods 9(4):357–359. https://doi.org/10.1038/nmeth.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lau NC, Seto AG, Kim J, Kuramochi-Miyagawa S, Nakano T, Bartel DP et al (2006) Characterization of the piRNA complex from rat testes. Science 313(5785):363–367

    Article  CAS  PubMed  Google Scholar 

  24. Ruby JG, Jan C, Player C, Axtell MJ, Lee W, Nusbaum C et al (2006) Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell 127(6):1193–1207

    Article  CAS  PubMed  Google Scholar 

  25. Girard A, Sachidanandam R, Hannon GJ, Carmell MA (2006) A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 442(7099):199–202

    Article  PubMed  Google Scholar 

  26. Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R et al (2007) Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128(6):1089–1103

    Article  CAS  PubMed  Google Scholar 

  27. Katzourakis A, Gifford RJ (2010) Endogenous viral elements in animal genomes. PLoS Genet 6(11):e1001191. https://doi.org/10.1371/journal.pgen.1001191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Parrish NF, Fujino K, Shiromoto Y, Iwasaki YW, Ha H, Xing J et al (2015) piRNAs derived from ancient viral processed pseudogenes as transgenerational sequence-specific immune memory in mammals. RNA 21(10):1691–1703. https://doi.org/10.1261/rna.052092.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Suzuki Y, Frangeul L, Dickson LB, Blanc H, Verdier Y, Vinh J et al (2017) Uncovering the repertoire of endogenous Flaviviral elements in Aedes Mosquito genomes. J Virol 91(15):e00571-17. https://doi.org/10.1128/JVI.00571-17

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tassetto M, Kunitomi M, Whitfield ZJ, Dolan PT, Sanchez-Vargas I, Garcia-Knight M et al (2019) Control of RNA viruses in mosquito cells through the acquisition of vDNA and endogenous viral elements. eLife 8:e41244. https://doi.org/10.7554/eLife.41244

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kapitonov VV, Jurka J (2008) A universal classification of eukaryotic transposable elements implemented in Repbase. Nat Rev Genet 9(5):411–412.; ; author reply 4. https://doi.org/10.1038/nrg2165-c1

    Article  PubMed  Google Scholar 

  32. Robine N, Lau NC, Balla S, Jin Z, Okamura K, Kuramochi-Miyagawa S et al (2009) A broadly conserved pathway generates 3'UTR-directed primary piRNAs. Curr Biol 19(24):2066–2076. https://doi.org/10.1016/j.cub.2009.11.064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42(Database issue):D68–D73. https://doi.org/10.1093/nar/gkt1181

    Article  CAS  PubMed  Google Scholar 

  34. Friedlander MR, Chen W, Adamidi C, Maaskola J, Einspanier R, Knespel S et al (2008) Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol 26(4):407–415. https://doi.org/10.1038/nbt1394

    Article  CAS  PubMed  Google Scholar 

  35. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G et al (2011) Integrative genomics viewer. Nat Biotechnol 29(1):24–26. https://doi.org/10.1038/nbt.1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Quinlan AR (2014) BEDTools: the Swiss-Army tool for genome feature analysis. Curr Protoc Bioinformatics 47:11 2 1–11 2 34. https://doi.org/10.1002/0471250953.bi1112s47

    Article  Google Scholar 

  37. Gainetdinov I, Colpan C, Arif A, Cecchini K, Zamore PD (2018) A single mechanism of biogenesis, initiated and directed by PIWI proteins, explains piRNA production in Most animals. Mol Cell 71(5):775–90 e5. https://doi.org/10.1016/j.molcel.2018.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Andrews S. FastQC. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/2010

Download references

Acknowledgements

We thank the patience of the editors for pandemic-related extensions and Augustine Abaris from Boston University Research Computing Services for assistance with the setup of the singularity image. This study was also supported by Boston University School of Medicine Startup funds, the BU Genome Science Institute, the Wing-Tat Lee foundation, and the NIH grant fund R01-GM135215 to N.C.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelson C. Lau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dayama, G., Bulekova, K., Lau, N.C. (2022). Extending and Running the Mosquito Small RNA Genomics Resource Pipeline. In: Parrish, N.F., Iwasaki, Y.W. (eds) piRNA. Methods in Molecular Biology, vol 2509. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2380-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2380-0_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2379-4

  • Online ISBN: 978-1-0716-2380-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics