Skip to main content

Muscle and Fat Biopsy and Metabolomics

  • Chapter
  • First Online:
Basic Protocols in Foods and Nutrition

Abstract

The analysis of biological fluids and tissues in humans using a metabolomic approach can be somewhat complex if there is not an adequate collection and efficient sample preparation. The adjustment of spectrum acquisition parameters and data analysis are essential both in nuclear magnetic resonance spectroscopy (NMR) and in mass spectrometry (MS). This chapter will focus mainly on the methods and protocols for collecting and preparing biological fluids (blood, saliva, urine) and tissues (adipose and muscle) in humans using 1H NMR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ideker T, Galitski T, Hood L (2001) A new approach to decoding life: systems biology. Annu Rev Genomics Hum Genet 2:343–372. https://doi.org/10.1146/annurev.genom.2.1.343

    Article  CAS  PubMed  Google Scholar 

  2. Bertalanffy LV (1972) The history and status of general systems theory. Acad Manag J 15(4):407–426

    Google Scholar 

  3. Mesarović MD (1968) Systems theory and biology – view of a theoretician. In: Mesarović MD (ed) Systems theory and biology. Springer, Berlin, Heidelberg

    Chapter  Google Scholar 

  4. Mesarovic MD, Sreenath SN, Keene JD (2004) Search for organising principles: understanding in systems biology. Syst Biol 1(1):19–27

    Article  CAS  Google Scholar 

  5. Ederer M, Sauter T, Bullinger E et al (2003) An approach for dividing models of biological reaction networks into functional units. Simulation 79(12):703–716

    Article  Google Scholar 

  6. Patti GJ, Yanes O, Siuzdak G (2012) Innovation: metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol 13(4):263–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Trivedi DK, Hollywood KA, Goodacre R (2017) Metabolomics for the masses: the future of metabolomics in a personalized world. New Horiz Transl Med 3(6):294–305

    PubMed  PubMed Central  Google Scholar 

  8. Monteiro MS, Carvalho M, Bastos ML, Guedes P (2013) Metabolomics analysis for biomarker discovery: advances and challenges. Curr Med Chem 20(2):257–271

    Article  CAS  PubMed  Google Scholar 

  9. Johnson CH, Ivanisevic J, Siuzdak G (2016) Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol 17(7):451–459. https://doi.org/10.1038/nrm.2016.25. Epub 2016 Mar 16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fiehn O (2002) Metabolomics – the link between genotypes and phenotypes. Plant Mol Biol 48:155–171

    Article  CAS  PubMed  Google Scholar 

  11. Klassen A, Faccio AT, Canuto GAB et al (2017) Metabolomics: definitions and significance in systems biology. In: Sussulini A (ed) Metabolomics: from fundamentals to clinical applications. Advances in experimental medicine and biology 965. Springer, Cham, pp 3–17

    Chapter  Google Scholar 

  12. Krastanov A (2010) Metabolomics – the state of art. Biotechnol Biotechnol Equip 24:1537–1543

    Article  CAS  Google Scholar 

  13. Pinu FR, Beale DJ, Paten AM et al (2019) Systems biology and multi-omics integration: viewpoints from the metabolomics research community. Metabolites 9(4):76. https://doi.org/10.3390/metabo9040076

    Article  CAS  PubMed Central  Google Scholar 

  14. Subramanian I, Verma S, Kumar S et al (2020) Multiomics data integration, interpretation, and its application. Bioinform Biol Insights 14:1–24. https://doi.org/10.1177/117793221989905

    Article  Google Scholar 

  15. Martorell-Marugán J, Tabik S, Benhammou Y et al (2019) Deep learning in omics data analysis and precision medicine. In: Husi H (ed) Computational biology. Codon Publications, Brisbane

    Google Scholar 

  16. Chicco D, Heider D, Facchiano A (2020) Artificial intelligence bioinformatics: development and application of tools for omics and inter-omics studies. Front Genet. https://doi.org/10.3389/fgene.2020.00309

  17. Sanchez-Martinez S, Camara O, Piella G, Cikes M, Gonzalez Ballester MA, Miron M, Vellido A, Gomez E, Fraser A, Bijnens B (2019) Machine learning for clinical decision-making: challenges and opportunities. Preprints: 2019110278. https://doi.org/10.20944/preprints201911.0278.v1

  18. Tahir UA, Gerszten RE (2020) Omics and cardiometabolic disease risk prediction. Annu Rev Med 71(1):163–175

    Article  CAS  PubMed  Google Scholar 

  19. Giralt ME, Villarroya F (2013) White, brown, beige/brite: different adipose cells for different functions? Endocrinology 154(9):2992–3000. https://doi.org/10.1210/en.2013-1403

    Article  CAS  PubMed  Google Scholar 

  20. Cypess AM, Lehman S, Williams G et al (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360:1509–1517. https://doi.org/10.1056/NEJMoa0810780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chondronikola M, Annamalai P, Chao T et al (2015) A percutaneous needle biopsy technique for sampling the supraclavicular brown adipose tissue depot of humans. Int J Obes (Lond) 39(10):1561–1564. https://doi.org/10.1038/ijo.2015.76. Epub 2015 Apr 29

    Article  CAS  Google Scholar 

  22. Alderete TL, Settler FR, Sheng X et al (2015) A novel biopsy method to increase yield of subcutaneous abdominal adipose tissue. Int J Obes (Lond) 39(1):183–186. https://doi.org/10.1038/ijo.2014.90. Epub 2014 May 21

  23. Tarnopolsky MA, Pearce E, Smith K, Lach B (2011) Suction-modified Bergström muscle biopsy technique: experience with 13,500 procedures. Comparative study. Muscle Nerve 43(5):717–725. https://doi.org/10.1002/mus.21945

    Article  PubMed  Google Scholar 

  24. Shanely RA, Zwetsloot KA, Triplett NT et al (2014) Human skeletal muscle biopsy procedures using the modified Bergström technique. J Vis Exp (91):51812. https://doi.org/10.3791/51812

  25. Castro A, Duft RG, Zeri ACM et al (2020) Commentary: metabolomics-based studies assessing exercise-induced alterations of the human metabolome: a systematic review. Front Physiol 11:353. https://doi.org/10.3389/fphys.2020.00353

  26. Daskalaki E, Blakburn G, Kalna G et al (2015) A study of the effects of exercise on the urinary metabolome using normalisation to individual metabolic output. Metabolites 5(1):119–139. https://doi.org/10.3390/metabo5010119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Karimpour M, Surowiec I, Wu J, Gouveua-Figueira S (2016) Postprandial metabolomics: a pilot mass spectrometry and NMR study of the human plasma metabolome in response to a challenge meal. Anal Chim Acta 908:121–131. https://doi.org/10.1016/j.aca.2015.12.009

    Article  CAS  PubMed  Google Scholar 

  28. Shrestha A, Mullner E, Poutanen K et al (2017) Metabolic changes in serum metabolome in response to a meal. Eur J Nutr 56(2):671–681. https://doi.org/10.1007/s00394-015-1111-y

    Article  CAS  PubMed  Google Scholar 

  29. Giskeødegård GF, Andreassen T, Bertilsson H et al (2019) The effect of sampling procedures and day-to-day variations in metabolomics studies of biofluids. Anal Chim Acta 1081:93–102. https://doi.org/10.1016/j.aca.2019.07.026

    Article  CAS  PubMed  Google Scholar 

  30. Peake JM, Tan SJ, Markworth JF et al (2014) Metabolic and hormonal responses to isoenergetic high-intensity interval exercise and continuous moderate-intensity exercise. Am J Physiol Endocrinol Metab 307(7):E539–E552. https://doi.org/10.1152/ajpendo.00276.2014

    Article  CAS  PubMed  Google Scholar 

  31. González-Domínguez R, González-Domínguez Á, Sayago A, Fernández-Recamales Á (2020) Recommendations and best practices for standardizing the pre-analytical processing of blood and urine. Samples in metabolomics. Metabolites 10(6):229. https://doi.org/10.3390/metabo10060229

  32. Bi H, Guo Z, Jia X et al (2020) The key points in the pre-analytical procedures of blood and urine samples in metabolomics studies. Metabolomic 16(6):68. https://doi.org/10.1007/s11306-020-01666-2

  33. Emwas AH, Roy R, McKay RT et al (2016) Recommendations and standardization of biomarker quantification using NMR-based metabolomics with particular focus on urinary analysis. J Proteome Res 15(2):360–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bellagambi FG, Lomonaco T, Salvo P et al (2020) Saliva sampling: methods and devices. An overview. Trends Anal Chem 124:124115781. https://doi.org/10.1016/j.trac.2019.115781

    Article  CAS  Google Scholar 

  35. Duarte D, Castro B, Pereira JL et al (2020) Evaluation of saliva stability for NMR metabolomics: collection and handling protocols. Metabolites 10:515. https://doi.org/10.3390/metabo10120515

    Article  CAS  PubMed Central  Google Scholar 

  36. Gardner A, Carpenter G, So PW (2020) Salivary metabolomics: from diagnostic biomarker discovery to investigating biological function. Metabolites 10(2):47. https://doi.org/10.3390/metabo10020047

  37. Van Den Berg RA, Hoefsloot HCJ, Westerhuis JA et al (2006) Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics 7:142. https://doi.org/10.1186/1471-2164-7-142

  38. Duft RG. Castro A, Mikahil MPTC, Cavaglieri CR (2017) Metabolomics and exercise: possibilities and perspectives. Motriz: Rev Educ Fis. Rio Claro 23(2). https://doi.org/10.1590/s1980-6574201700020010

  39. Cambiaghi A, Ferrario M, Masseroli M (2017) Analysis of metabolomic data: tools, current strategies and future challenges for omics data integration. Brief Bioinform 18(3):498–510

    CAS  PubMed  Google Scholar 

  40. Tanabe M, Kanehisa M (2012) Using the KEGG database resource. Curr Protoc Bioinformatics. Chapter 1:Unit1.12. https://doi.org/10.1002/0471250953.bi0112s38

  41. Jewison T, Su Y, Disfany FM et al (2014) SMPDB 2.0: big improvements to the small molecule pathway database. Nucleic Acids Res 42:D478–D484. https://doi.org/10.1093/nar/gkt1067

    Article  CAS  PubMed  Google Scholar 

  42. Caspi R, Billingtib R, Ferrer L et al (2016) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 44(D1):D471–D480. https://doi.org/10.1093/nar/gkv1164

    Article  CAS  PubMed  Google Scholar 

  43. Kelder T, van Iersel MP, Hanspers K et al (2012) WikiPathways: building research communities on biological pathways. Nucleic Acids Res 40:D1301–D1307. https://doi.org/10.1093/nar/gkr1074

    Article  CAS  PubMed  Google Scholar 

  44. Wishart DS, Feunang YD, Marcu A et al (2018) HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res 46(D1):D608–D617. https://doi.org/10.1093/nar/gkx1089

    Article  CAS  PubMed  Google Scholar 

  45. Chong J, Soufan O, Caraus I et al (2018) MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res 46(W1):W486–W494. https://doi.org/10.1093/nar/gky310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lamichhane S, Parthi S, Dickens AM et al (2018) An overview of metabolomics data analysis: current tools and future perspectives. Compr Anal Chem 82:387–413. https://doi.org/10.1016/bs.coac.2018.07.001

    Article  CAS  Google Scholar 

  47. Chong J, Xia J (2020) Using MetaboAnalyst 4.0 for metabolomics data analysis, interpretation, and integration with other omics data. Methods Mol Biol 2104:337–360

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cláudia Regina Cavaglieri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cavaglieri, C.R., Chacon-Mikahil, M.P.T., Duft, R.G., Bonfante, I.L.P., Gáspari, A.F., Castro, A. (2022). Muscle and Fat Biopsy and Metabolomics. In: Betim Cazarin, C.B. (eds) Basic Protocols in Foods and Nutrition. Methods and Protocols in Food Science . Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2345-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2345-9_22

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2344-2

  • Online ISBN: 978-1-0716-2345-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics