Skip to main content

In Vitro Models of the Human Blood–Brain Barrier Utilising Human Induced Pluripotent Stem Cells: Opportunities and Challenges

  • Protocol
  • First Online:
The Blood-Brain Barrier

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2492))

Abstract

The blood–brain barrier (BBB) is a component of the neurovascular unit formed by specialized brain microvascular endothelial cells surrounded by astrocytes end-feet processes, pericytes, and a basement membrane. The BBB plays an important role in the maintenance of brain homeostasis and has seen a growing involvement in the pathophysiology of various neurological diseases. On the other hand, the presence of such a barrier remains an important challenge for drug delivery to treat such illnesses.

Since the pioneering work describing the isolation and cultivation of primary brain microvascular cells about 50 years ago until now, the development of an in vitro model of the BBB that is scalable, capable to form tight monolayers, and predictive of drug permeability in vivo remained extremely challenging.

The recent description of the use of induced pluripotent stem cells (iPSCs) as a modeling tool for neurological diseases raised momentum into the use of such cells to develop new in vitro models of the BBB. This chapter will provide an exhaustive description of the use of iPSCs as a source of cells for modeling the BBB in vitro, describe the advantages and limitations of such model, as well as describe their prospective use for disease modeling and drug permeability screening platforms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Joo F, Karnushina I (1973) A procedure for the isolation of capillaries from rat brain. Cytobios 8(29):41–48

    CAS  PubMed  Google Scholar 

  2. Jackson S, Meeks C, Vezina A et al (2019) Model systems for studying the blood-brain barrier: applications and challenges. Biomaterials 214:119217. https://doi.org/10.1016/j.biomaterials.2019.05.028

    Article  CAS  PubMed  Google Scholar 

  3. Helms HC, Abbott NJ, Burek M et al (2016) In vitro models of the blood-brain barrier: an overview of commonly used brain endothelial cell culture models and guidelines for their use. J Cereb Blood Flow Metab 36(5):862–890. https://doi.org/10.1177/0271678X16630991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lyck R, Ruderisch N, Moll AG et al (2009) Culture-induced changes in blood-brain barrier transcriptome: implications for amino-acid transporters in vivo. J Cereb Blood Flow Metab 29(9):1491–1502. https://doi.org/10.1038/jcbfm.2009.72

    Article  CAS  PubMed  Google Scholar 

  5. Yusof SR, Avdeef A, Abbott NJ (2014) In vitro porcine blood-brain barrier model for permeability studies: pCEL-X software pKa(FLUX) method for aqueous boundary layer correction and detailed data analysis. Eur J Pharm Sci 65:98–111. https://doi.org/10.1016/j.ejps.2014.09.009

    Article  CAS  PubMed  Google Scholar 

  6. Patabendige A, Skinner RA, Abbott NJ (2013) Establishment of a simplified in vitro porcine blood-brain barrier model with high transendothelial electrical resistance. Brain Res 1521:1–15. https://doi.org/10.1016/j.brainres.2012.06.057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Culot M, Lundquist S, Vanuxeem D et al (2008) An in vitro blood-brain barrier model for high throughput (HTS) toxicological screening. Toxicol In Vitro 22(3):799–811. https://doi.org/10.1016/j.tiv.2007.12.016

    Article  CAS  PubMed  Google Scholar 

  8. Lippmann ES, Azarin SM, Kay JE et al (2012) Derivation of blood-brain barrier endothelial cells from human pluripotent stem cells. Nat Biotechnol 30(8):783–791. https://doi.org/10.1038/nbt.2247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Murugan V (2009) Embryonic stem cell research: a decade of debate from Bush to Obama. Yale J Biol Med 82(3):101–103

    PubMed  PubMed Central  Google Scholar 

  10. Vazin T, Freed WJ (2010) Human embryonic stem cells: derivation, culture, and differentiation: a review. Restor Neurol Neurosci 28(4):589–603. https://doi.org/10.3233/RNN-2010-0543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676. https://doi.org/10.1016/j.cell.2006.07.024

    Article  CAS  PubMed  Google Scholar 

  12. Yagi M, Yamanaka S, Yamada Y (2017) Epigenetic foundations of pluripotent stem cells that recapitulate in vivo pluripotency. Lab Investig 97(10):1133–1141. https://doi.org/10.1038/labinvest.2017.87

    Article  CAS  PubMed  Google Scholar 

  13. Yu J, Vodyanik MA, Smuga-Otto K et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920. https://doi.org/10.1126/science.1151526

    Article  CAS  PubMed  Google Scholar 

  14. Ebben JD, Zorniak M, Clark PA et al (2011) Introduction to induced pluripotent stem cells: advancing the potential for personalized medicine. World Neurosurg 76(3–4):270–275. https://doi.org/10.1016/j.wneu.2010.12.055

    Article  PubMed  PubMed Central  Google Scholar 

  15. Inoue H, Nagata N, Kurokawa H et al (2014) iPS cells: a game changer for future medicine. EMBO J 33(5):409–417

    Article  CAS  Google Scholar 

  16. Soldner F, Jaenisch R (2017) In vitro modeling of complex neurological diseases. In: Jaenisch R, Zhang F, Gage F (eds) Genome editing in neurosciences, Cham, pp 1–19. https://doi.org/10.1007/978-3-319-60192-2_1

  17. Wong PC, Cai H, Borchelt DR et al (2002) Genetically engineered mouse models of neurodegenerative diseases. Nat Neurosci 5(7):633–639. https://doi.org/10.1038/nn0702-633

    Article  CAS  PubMed  Google Scholar 

  18. Mehta D, Jackson R, Paul G et al (2017) Why do trials for Alzheimer’s disease drugs keep failing? A discontinued drug perspective for 2010-2015. Expert Opin Investig Drugs 26(6):735–739

    Article  CAS  Google Scholar 

  19. Zhang SC, Wernig M, Duncan ID et al (2001) In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol 19(12):1129–1133. https://doi.org/10.1038/nbt1201-1129

    Article  CAS  PubMed  Google Scholar 

  20. Marchetto MC, Carromeu C, Acab A et al (2010) A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell 143(4):527–539. https://doi.org/10.1016/j.cell.2010.10.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mattis VB, Svendsen CN (2011) Induced pluripotent stem cells: a new revolution for clinical neurology? Lancet Neurol 10(4):383–394

    Article  Google Scholar 

  22. Tiscornia G, Vivas EL, Belmonte JCI (2011) Diseases in a dish: modeling human genetic disorders using induced pluripotent cells. Nat Med 17(12):1570–1576. https://doi.org/10.1038/nm.2504

    Article  CAS  PubMed  Google Scholar 

  23. Zhang Y, Xie X, Hu J et al (2020) Prospects of directly reprogrammed adult human neurons for neurodegenerative disease modeling and drug discovery: iN vs. iPSCs models. Front Neurosci 14:546484. https://doi.org/10.3389/fnins.2020.546484

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ebert AD, Yu J, Rose FF Jr et al (2009) Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 457(7227):277–280. https://doi.org/10.1038/nature07677

    Article  CAS  PubMed  Google Scholar 

  25. Chang T, Zheng W, Tsark W et al (2011) Brief report: phenotypic rescue of induced pluripotent stem cell-derived motoneurons of a spinal muscular atrophy patient. Stem Cells 29(12):2090–2093. https://doi.org/10.1002/stem.749

    Article  CAS  PubMed  Google Scholar 

  26. Zhang X, Li Z, Liu Y et al (2021) Great expectations: induced pluripotent stem cell technologies in neurodevelopmental impairments. Int J Med Sci 18(2):459–473. https://doi.org/10.7150/ijms.51842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cheffer A, Flitsch LJ, Krutenko T et al (2020) Human stem cell-based models for studying autism spectrum disorder-related neuronal dysfunction. Mol Autism 11(1):99. https://doi.org/10.1186/s13229-020-00383-w

    Article  PubMed  PubMed Central  Google Scholar 

  28. Burnight ER, Bohrer LR, Giacalone JC et al (2018) CRISPR-Cas9-mediated correction of the 1.02 kb common deletion in CLN3 in induced pluripotent stem cells from patients with batten disease. CRISPR J 1:75–87. https://doi.org/10.1089/crispr.2017.0015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lukovic D, Moreno-Manzano V, Rodriguez-Jimenez FJ et al (2017) hiPSC disease modeling of rare hereditary cerebellar ataxias: opportunities and future challenges. Neuroscientist 23(5):554–566. https://doi.org/10.1177/1073858416672652

    Article  CAS  PubMed  Google Scholar 

  30. Gough G, O'Brien NL, Alic I et al (2020) Modeling down syndrome in cells: from stem cells to organoids. Prog Brain Res 251:55–90. https://doi.org/10.1016/bs.pbr.2019.10.003

    Article  PubMed  Google Scholar 

  31. Tidball AM, Parent JM (2016) Concise review: exciting cells: Modeling genetic epilepsies with patient-derived induced pluripotent stem cells. Stem Cells 34(1):27–33. https://doi.org/10.1002/stem.2203

    Article  PubMed  Google Scholar 

  32. Abu Diab M, Eiges R (2019) The contribution of pluripotent stem cell (PSC)-based models to the study of Fragile X Syndrome (FXS). Brain Sci 9(2). https://doi.org/10.3390/brainsci9020042

  33. Gomathi M, Balachandar V (2017) Novel therapeutic approaches: Rett syndrome and human induced pluripotent stem cell technology. Stem Cell Investig 4:20. https://doi.org/10.21037/sci.2017.02.11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Devineni A, Tohme S, Kody MT et al (2016) Stepping back to move forward: a current review of iPSCs in the fight against Alzheimer’s disease. Am J Stem Cells 5(3):99–106

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Sances S, Bruijn LI, Chandran S et al (2016) Modeling ALS with motor neurons derived from human induced pluripotent stem cells. Nat Neurosci 19(4):542–553. https://doi.org/10.1038/nn.4273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Csobonyeiova M, Polak S, Danisovic L (2020) Recent overview of the use of iPSCs Huntington’s disease modeling and therapy. Int J Mol Sci 21(6). https://doi.org/10.3390/ijms21062239

  37. Kouroupi G, Antoniou N, Prodromidou K et al (2020) Patient-derived induced pluripotent stem cell-based models in Parkinson’s disease for drug identification. Int J Mol Sci 21(19). https://doi.org/10.3390/ijms21197113

  38. Weksler BB, Subileau EA, Perriere N et al (2005) Blood-brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J 19(13):1872–1874. https://doi.org/10.1096/fj.04-3458fje

    Article  CAS  PubMed  Google Scholar 

  39. Daneman R, Agalliu D, Zhou L et al (2009) Wnt/beta-catenin signaling is required for CNS, but not non-CNS, angiogenesis. Proc Natl Acad Sci U S A 106(2):641–646. https://doi.org/10.1073/pnas.0805165106

    Article  PubMed  PubMed Central  Google Scholar 

  40. Liebner S, Corada M, Bangsow T et al (2008) Wnt/beta-catenin signaling controls development of the blood-brain barrier. J Cell Biol 183(3):409–417. https://doi.org/10.1083/jcb.200806024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Crone C, Olesen SP (1982) Electrical resistance of brain microvascular endothelium. Brain Res 241(1):49–55. https://doi.org/10.1016/0006-8993(82)91227-6

    Article  CAS  PubMed  Google Scholar 

  42. Mizee MR, Wooldrik D, Lakeman KA et al (2013) Retinoic acid induces blood-brain barrier development. J Neurosci 33(4):1660–1671. https://doi.org/10.1523/JNEUROSCI.1338-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lippmann ES, Al-Ahmad A, Azarin SM et al (2014) A retinoic acid-enhanced, multicellular human blood-brain barrier model derived from stem cell sources. Sci Rep 4:4160. https://doi.org/10.1038/srep04160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Stebbins MJ, Lippmann ES, Faubion MG et al (2018) Activation of RARalpha, RARgamma, or RXRalpha increases barrier tightness in human induced pluripotent stem cell-derived brain endothelial cells. Biotechnol J 13(2). https://doi.org/10.1002/biot.201700093

  45. Katt ME, Xu ZS, Gerecht S et al (2016) Human brain microvascular endothelial cells derived from the BC1 iPS cell line exhibit a blood-brain barrier phenotype. PLoS One 11(4):e0152105. https://doi.org/10.1371/journal.pone.0152105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cecchelli R, Aday S, Sevin E et al (2014) A stable and reproducible human blood-brain barrier model derived from hematopoietic stem cells. PLoS One 9(6):e99733. https://doi.org/10.1371/journal.pone.0099733

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wilhelm I, Fazakas C, Krizbai IA (2011) In vitro models of the blood-brain barrier. Acta Neurobiol Exp (Wars) 71(1):113–128

    Google Scholar 

  48. Qian T, Maguire SE, Canfield SG et al (2017) Directed differentiation of human pluripotent stem cells to blood-brain barrier endothelial cells. Sci Adv 3(11):e1701679. https://doi.org/10.1126/sciadv.1701679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Patel R, Alahmad AJ (2016) Growth-factor reduced Matrigel source influences stem cell derived brain microvascular endothelial cell barrier properties. Fluids Barriers CNS 13(6):6. https://doi.org/10.1186/s12987-016-0030-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Neal EH, Marinelli NA, Shi Y et al (2019) A simplified, fully defined differentiation scheme for producing blood-brain barrier endothelial cells from human iPSCs. Stem Cell Rep 12(6):1380–1388. https://doi.org/10.1016/j.stemcr.2019.05.008

    Article  CAS  Google Scholar 

  51. Canfield SG, Stebbins MJ, Morales BS et al (2017) An isogenic blood-brain barrier model comprising brain endothelial cells, astrocytes, and neurons derived from human induced pluripotent stem cells. J Neurochem 140(6):874–888. https://doi.org/10.1111/jnc.13923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Patel R, Page S, Al-Ahmad AJ (2017) Isogenic blood-brain barrier models based on patient-derived stem cells display inter-individual differences in cell maturation and functionality. J Neurochem 142(1):74–88. https://doi.org/10.1111/jnc.14040

    Article  CAS  PubMed  Google Scholar 

  53. Stebbins MJ, Gastfriend BD, Canfield SG et al (2019) Human pluripotent stem cell-derived brain pericyte-like cells induce blood-brain barrier properties. Sci Adv 5(3):eaau7375. https://doi.org/10.1126/sciadv.aau7375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mantle JL, Min L, Lee KH (2016) Minimum transendothelial electrical resistance thresholds for the study of small and large molecule drug transport in a human in vitro blood-brain barrier model. Mol Pharm 13(12):4191–4198. https://doi.org/10.1021/acs.molpharmaceut.6b00818

    Article  CAS  PubMed  Google Scholar 

  55. Wilson HK, Canfield SG, Shusta EV et al (2014) Concise review: tissue-specific microvascular endothelial cells derived from human pluripotent stem cells. Stem Cells 32(12):3037–3045. https://doi.org/10.1002/stem.1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. DeStefano JG, Xu ZS, Williams AJ et al (2017) Effect of shear stress on iPSC-derived human brain microvascular endothelial cells (dhBMECs). Fluids Barriers CNS 14(1):20. https://doi.org/10.1186/s12987-017-0068-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lim RG, Quan C, Reyes-Ortiz AM et al (2017) Huntington’s disease iPSC-derived brain microvascular endothelial cells reveal WNT-mediated Angiogenic and blood-brain barrier deficits. Cell Rep 19(7):1365–1377. https://doi.org/10.1016/j.celrep.2017.04.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Vatine GD, Al-Ahmad A, Barriga BK et al (2017) Modeling psychomotor retardation using iPSCs from MCT8-deficient patients indicates a prominent role for the blood-brain barrier. Cell Stem Cell 20(6):831–843.e835. https://doi.org/10.1016/j.stem.2017.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Katt ME, Mayo LN, Ellis SE et al (2019) The role of mutations associated with familial neurodegenerative disorders on blood-brain barrier function in an iPSC model. Fluids Barriers CNS 16(1):20. https://doi.org/10.1186/s12987-019-0139-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Raut S, Patel R, Al-Ahmad AJ (2021) Presence of a mutation in PSEN1 or PSEN2 gene is associated with an impaired brain endothelial cell phenotype in vitro. Fluids Barriers CNS 18(1):3. https://doi.org/10.1186/s12987-020-00235-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Berndt P, Winkler L, Cording J et al (2019) Tight junction proteins at the blood-brain barrier: far more than claudin-5. Cell Mol Life Sci 76(10):1987–2002. https://doi.org/10.1007/s00018-019-03030-7

    Article  CAS  PubMed  Google Scholar 

  62. Al-Ahmad AJ (2017) Comparative study of expression and activity of glucose transporters between stem cell-derived brain microvascular endothelial cells and hCMEC/D3 cells. Am J Physiol Cell Physiol 313(4):C421–C429. https://doi.org/10.1152/ajpcell.00116.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Albekairi TH, Vaidya B, Patel R et al (2019) Brain delivery of a potent opioid receptor agonist, Biphalin during ischemic stroke: role of Organic Anion Transporting Polypeptide (OATP). Pharmaceutics 11(9). https://doi.org/10.3390/pharmaceutics11090467

  64. Nakagawa S, Deli MA, Kawaguchi H et al (2009) A new blood-brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem Int 54(3–4):253–263. https://doi.org/10.1016/j.neuint.2008.12.002

    Article  CAS  PubMed  Google Scholar 

  65. Al Ahmad A, Gassmann M, Ogunshola OO (2009) Maintaining blood-brain barrier integrity: pericytes perform better than astrocytes during prolonged oxygen deprivation. J Cell Physiol 218(3):612–622. https://doi.org/10.1002/jcp.21638

    Article  CAS  PubMed  Google Scholar 

  66. Weidenfeller C, Svendsen CN, Shusta EV (2007) Differentiating embryonic neural progenitor cells induce blood-brain barrier properties. J Neurochem 101(2):555–565. https://doi.org/10.1111/j.1471-4159.2006.04394.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Demeuse P, Kerkhofs A, Struys-Ponsar C et al (2002) Compartmentalized coculture of rat brain endothelial cells and astrocytes: a syngenic model to study the blood-brain barrier. J Neurosci Methods 121(1):21–31. https://doi.org/10.1016/s0165-0270(02)00225-x

    Article  PubMed  Google Scholar 

  68. Cucullo L, McAllister MS, Kight K et al (2002) A new dynamic in vitro model for the multidimensional study of astrocyte-endothelial cell interactions at the blood-brain barrier. Brain Res 951(2):243–254. https://doi.org/10.1016/s0006-8993(02)03167-0

    Article  CAS  PubMed  Google Scholar 

  69. Dehouck MP, Meresse S, Delorme P et al (1990) An easier, reproducible, and mass-production method to study the blood-brain barrier in vitro. J Neurochem 54(5):1798–1801. https://doi.org/10.1111/j.1471-4159.1990.tb01236.x

    Article  CAS  PubMed  Google Scholar 

  70. Janzer RC, Raff MC (1987) Astrocytes induce blood-brain barrier properties in endothelial cells. Nature 325(6101):253–257. https://doi.org/10.1038/325253a0

    Article  CAS  PubMed  Google Scholar 

  71. Arthur FE, Shivers RR, Bowman PD (1987) Astrocyte-mediated induction of tight junctions in brain capillary endothelium: an efficient in vitro model. Brain Res 433(1):155–159. https://doi.org/10.1016/0165-3806(87)90075-7

    Article  CAS  PubMed  Google Scholar 

  72. Rhea EM, Logsdon AF, Hansen KM et al (2020) The S1 protein of SARS-CoV-2 crosses the blood-brain barrier in mice. Nat Neurosci. https://doi.org/10.1038/s41593-020-00771-8

  73. Buzhdygan TP, DeOre BJ, Baldwin-Leclair A et al (2020) The SARS-CoV-2 spike protein alters barrier function in 2D static and 3D microfluidic in-vitro models of the human blood-brain barrier. Neurobiol Dis 146:105131. https://doi.org/10.1016/j.nbd.2020.105131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Alimonti JB, Ribecco-Lutkiewicz M, Sodja C et al (2018) Zika virus crosses an in vitro human blood brain barrier model. Fluids Barriers CNS 15(1):15. https://doi.org/10.1186/s12987-018-0100-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kim BJ, Shusta EV, Doran KS (2019) Past and current perspectives in modeling bacteria and blood-brain barrier interactions. Front Microbiol 10:1336. https://doi.org/10.3389/fmicb.2019.01336

    Article  PubMed  PubMed Central  Google Scholar 

  76. Kim BJ, Bee OB, McDonagh MA et al (2017) Modeling group B streptococcus and blood-brain barrier interaction by using induced pluripotent stem cell-derived brain endothelial cells. mSphere 2(6). https://doi.org/10.1128/mSphere.00398-17

  77. Patel R, Hossain MA, German N et al (2018) Gliotoxin penetrates and impairs the integrity of the human blood-brain barrier in vitro. Mycotoxin Res 34(4):257–268. https://doi.org/10.1007/s12550-018-0320-7

    Article  CAS  PubMed  Google Scholar 

  78. Nishihara H, Gastfriend BD, Soldati S et al (2020) Advancing human induced pluripotent stem cell-derived blood-brain barrier models for studying immune cell interactions. FASEB J 34(12):16693–16715. https://doi.org/10.1096/fj.202001507RR

    Article  CAS  PubMed  Google Scholar 

  79. Martinez A, Al-Ahmad AJ (2019) Effects of glyphosate and aminomethylphosphonic acid on an isogeneic model of the human blood-brain barrier. Toxicol Lett 304:39–49. https://doi.org/10.1016/j.toxlet.2018.12.013

    Article  CAS  PubMed  Google Scholar 

  80. Park TE, Mustafaoglu N, Herland A et al (2019) Hypoxia-enhanced blood-brain barrier chip recapitulates human barrier function and shuttling of drugs and antibodies. Nat Commun 10(1):2621. https://doi.org/10.1038/s41467-019-10588-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Haley MJ, Lawrence CB (2017) The blood-brain barrier after stroke: structural studies and the role of transcytotic vesicles. J Cereb Blood Flow Metab 37(2):456–470. https://doi.org/10.1177/0271678X16629976

    Article  PubMed  Google Scholar 

  82. Zhang Z, Yan J, Shi H (2016) Role of hypoxia inducible factor 1 in Hyperglycemia-exacerbated blood-brain barrier disruption in ischemic stroke. Neurobiol Dis 95:82–92. https://doi.org/10.1016/j.nbd.2016.07.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yan J, Zhou B, Taheri S et al (2011) Differential effects of HIF-1 inhibition by YC-1 on the overall outcome and blood-brain barrier damage in a rat model of ischemic stroke. PLoS One 6(11):e27798. https://doi.org/10.1371/journal.pone.0027798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yan J, Zhang Z, Shi H (2012) HIF-1 is involved in high glucose-induced paracellular permeability of brain endothelial cells. Cell Mol Life Sci 69(1):115–128. https://doi.org/10.1007/s00018-011-0731-5

    Article  CAS  PubMed  Google Scholar 

  85. Ogunshola OO, Al-Ahmad A (2012) HIF-1 at the blood-brain barrier: a mediator of permeability? High Alt Med Biol 13(3):153–161. https://doi.org/10.1089/ham.2012.1052

    Article  CAS  PubMed  Google Scholar 

  86. Engelhardt S, Patkar S, Ogunshola OO (2014) Cell-specific blood-brain barrier regulation in health and disease: a focus on hypoxia. Br J Pharmacol 171(5):1210–1230. https://doi.org/10.1111/bph.12489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Engelhardt S, Al-Ahmad AJ, Gassmann M et al (2014) Hypoxia selectively disrupts brain microvascular endothelial tight junction complexes through a hypoxia-inducible factor-1 (HIF-1) dependent mechanism. J Cell Physiol 229(8):1096–1105. https://doi.org/10.1002/jcp.24544

    Article  CAS  PubMed  Google Scholar 

  88. Deli MA, Abraham CS, Kataoka Y et al (2005) Permeability studies on in vitro blood-brain barrier models: physiology, pathology, and pharmacology. Cell Mol Neurobiol 25(1):59–127. https://doi.org/10.1007/s10571-004-1377-8

    Article  PubMed  Google Scholar 

  89. Page S, Raut S, Al-Ahmad A (2019) Oxygen-glucose deprivation/Reoxygenation-induced barrier disruption at the human blood-brain barrier is partially mediated through the HIF-1 pathway. NeuroMolecular Med 21(4):414–431. https://doi.org/10.1007/s12017-019-08531-z

    Article  CAS  PubMed  Google Scholar 

  90. Page S, Munsell A, Al-Ahmad AJ (2016) Cerebral hypoxia/ischemia selectively disrupts tight junctions complexes in stem cell-derived human brain microvascular endothelial cells. Fluids Barriers CNS 13(1):16. https://doi.org/10.1186/s12987-016-0042-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Natah SS, Srinivasan S, Pittman Q et al (2009) Effects of acute hypoxia and hyperthermia on the permeability of the blood-brain barrier in adult rats. J Appl Physiol (1985) 107(4):1348–1356. https://doi.org/10.1152/japplphysiol.91484.2008

    Article  CAS  PubMed Central  Google Scholar 

  92. Witt KA, Mark KS, Sandoval KE et al (2008) Reoxygenation stress on blood-brain barrier paracellular permeability and edema in the rat. Microvasc Res 75(1):91–96. https://doi.org/10.1016/j.mvr.2007.06.004

    Article  CAS  PubMed  Google Scholar 

  93. Yeh WL, Lu DY, Lin CJ et al (2007) Inhibition of hypoxia-induced increase of blood-brain barrier permeability by YC-1 through the antagonism of HIF-1alpha accumulation and VEGF expression. Mol Pharmacol 72(2):440–449. https://doi.org/10.1124/mol.107.036418

    Article  CAS  PubMed  Google Scholar 

  94. Koto T, Takubo K, Ishida S et al (2007) Hypoxia disrupts the barrier function of neural blood vessels through changes in the expression of claudin-5 in endothelial cells. Am J Pathol 170(4):1389–1397. https://doi.org/10.2353/ajpath.2007.060693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kaur C, Sivakumar V, Zhang Y et al (2006) Hypoxia-induced astrocytic reaction and increased vascular permeability in the rat cerebellum. Glia 54(8):826–839. https://doi.org/10.1002/glia.20420

    Article  CAS  PubMed  Google Scholar 

  96. Hayashi K, Nakao S, Nakaoke R et al (2004) Effects of hypoxia on endothelial/pericytic co-culture model of the blood-brain barrier. Regul Pept 123(1–3):77–83. https://doi.org/10.1016/j.regpep.2004.05.023

    Article  CAS  PubMed  Google Scholar 

  97. Fischer S, Wiesnet M, Marti HH et al (2004) Simultaneous activation of several second messengers in hypoxia-induced hyperpermeability of brain derived endothelial cells. J Cell Physiol 198(3):359–369. https://doi.org/10.1002/jcp.10417

    Article  CAS  PubMed  Google Scholar 

  98. Witt KA, Mark KS, Hom S et al (2003) Effects of hypoxia-reoxygenation on rat blood-brain barrier permeability and tight junctional protein expression. Am J Physiol Heart Circ Physiol 285(6):H2820–H2831. https://doi.org/10.1152/ajpheart.00589.2003

    Article  CAS  PubMed  Google Scholar 

  99. Schoch HJ, Fischer S, Marti HH (2002) Hypoxia-induced vascular endothelial growth factor expression causes vascular leakage in the brain. Brain 125(Pt 11):2549–2557. https://doi.org/10.1093/brain/awf257

    Article  PubMed  Google Scholar 

  100. Fischer S, Wobben M, Marti HH et al (2002) Hypoxia-induced hyperpermeability in brain microvessel endothelial cells involves VEGF-mediated changes in the expression of zonula occludens-1. Microvasc Res 63(1):70–80. https://doi.org/10.1006/mvre.2001.2367

    Article  CAS  PubMed  Google Scholar 

  101. Plateel M, Dehouck MP, Torpier G et al (1995) Hypoxia increases the susceptibility to oxidant stress and the permeability of the blood-brain barrier endothelial cell monolayer. J Neurochem 65(5):2138–2145. https://doi.org/10.1046/j.1471-4159.1995.65052138.x

    Article  CAS  PubMed  Google Scholar 

  102. Lee CAA, Seo HS, Armien AG et al (2018) Modeling and rescue of defective blood-brain barrier function of induced brain microvascular endothelial cells from childhood cerebral adrenoleukodystrophy patients. Fluids Barriers CNS 15(1):9. https://doi.org/10.1186/s12987-018-0094-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kinarivala N, Morsy A, Patel R et al (2020) An iPSC-derived neuron model of CLN3 disease facilitates small molecule phenotypic screening. ACS Pharmacol Transl Sci 3(5):931–947. https://doi.org/10.1021/acsptsci.0c00077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Clark PA, Al-Ahmad AJ, Qian T et al (2016) Analysis of cancer-targeting Alkylphosphocholine analogue permeability characteristics using a human induced pluripotent stem cell blood-brain barrier model. Mol Pharm 13(9):3341–3349. https://doi.org/10.1021/acs.molpharmaceut.6b00441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lippmann ES, Azarin SM, Palecek SP et al (2020) Commentary on human pluripotent stem cell-based blood-brain barrier models. Fluids Barriers CNS 17(1):64. https://doi.org/10.1186/s12987-020-00222-3

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abraham J. Al-Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pervaiz, I., Al-Ahmad, A.J. (2022). In Vitro Models of the Human Blood–Brain Barrier Utilising Human Induced Pluripotent Stem Cells: Opportunities and Challenges. In: Stone, N. (eds) The Blood-Brain Barrier. Methods in Molecular Biology, vol 2492. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2289-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2289-6_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2288-9

  • Online ISBN: 978-1-0716-2289-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics