Skip to main content

Generating Somatic Knockout Cell Lines with CRISPR-Cas9 Technology to Investigate SMAD Signaling

  • Protocol
  • First Online:
TGF-Beta Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2488))

  • 701 Accesses

Abstract

Genome engineering provides a powerful tool to explore TGF-β/SMAD signaling by enabling the deletion and modification of critical components of the pathway. Over the past years, CRISPR-Cas9 technology has matured and can now be used to routinely generate knockout cell lines. Here, we describe a method to design and generate deletions of genes from the SMAD pathway in somatic human cell lines based on homologous recombination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fuchs O (2011) Inhibition of TGF- signaling for the treatment of tumor metastasis and fibrotic diseases. Curr Signal Transduct Ther 6(1):29–43

    Article  CAS  Google Scholar 

  2. Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425(6958):577–584

    Article  CAS  Google Scholar 

  3. Novina CD, Sharp PA (2004) The RNAi revolution. Nature 430(6996):161–164

    Article  CAS  Google Scholar 

  4. Aagaard L, Rossi JJ (2007) RNAi therapeutics: principles, prospects and challenges. Adv Drug Deliv Rev 59(2–3):75–86

    Article  CAS  Google Scholar 

  5. Rago C, Vogelstein B, Bunz F (2007) Genetic knockouts and knockins in human somatic cells. Nat Protoc 2(11):2734–2746

    Article  CAS  Google Scholar 

  6. Strasen J, Sarma U, Jentsch M, Bohn S, Sheng C, Horbelt D, Knaus P, Legewie S, Loewer A (2018) Cell-specific responses to the cytokine TGFbeta are determined by variability in protein levels. Mol Syst Biol 14(1):e7733

    Article  Google Scholar 

  7. Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327(5962):167–170

    Article  CAS  Google Scholar 

  8. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157(6):1262–1278

    Article  CAS  Google Scholar 

  9. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8(11):2281–2308

    Article  CAS  Google Scholar 

  10. Sheng C, Mendler IH, Rieke S, Snyder P, Jentsch M, Friedrich D, Drossel B, Loewer A (2019) PCNA-mediated degradation of p21 coordinates the DNA damage response and cell cycle regulation in individual cells. Cell Rep 27(1):48–58

    Article  CAS  Google Scholar 

  11. Doench JG, Hartenian E, Graham DB, Tothova Z, Hegde M, Smith I, Sullender M, Ebert BL, Xavier RJ, Root DE (2014) Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat Biotechnol 32(12):1262–1267

    Article  CAS  Google Scholar 

  12. Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF, Smith I, Tothova Z, Wilen C, Orchard R, Virgin HW, Listgarten J, Root DE (2016) Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol 34(2):184–191

    Article  CAS  Google Scholar 

  13. Heigwer F, Kerr G, Boutros M (2014) E-CRISP: fast CRISPR target site identification. Nat Methods 11(2):122–123

    Article  CAS  Google Scholar 

  14. Guo D, Li X, Zhu P, Feng Y, Yang J, Zheng Z, Yang W, Zhang E, Zhou S, Wang H (2015) Online high-throughput mutagenesis designer using scoring matrix of sequence-specific endonucleases. J Integr Bioinform 12(1):35–48

    Article  Google Scholar 

  15. Moreno-Mateos MA, Vejnar CE, Beaudoin JD, Fernandez JP, Mis EK, Khokha MK, Giraldez AJ (2015) CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat Methods 12(10):982–988

    Article  CAS  Google Scholar 

  16. Labun K, Montague TG, Krause M, Torres CY, Tjeldnes H, Valen E (2019) CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing. Nucleic Acids Res 47(W1):W171–W174

    Article  CAS  Google Scholar 

  17. Wong N, Liu W, Wang X (2015) WU-CRISPR: characteristics of functional guide RNAs for the CRISPR/Cas9 system. Genome Biol 16:218

    Article  Google Scholar 

  18. Naito Y, Hino K, Bono H, Ui-Tei K (2015) CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics 31(7):1120–1123

    Article  CAS  Google Scholar 

  19. Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y, Zhang F (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154(6):1380–1389

    Article  CAS  Google Scholar 

  20. Brinkman EK, Chen T, Amendola M, van Steensel B (2014) Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res 42(22):e168

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants and fellowships from the China Scholarship Council (to Z.H.) and the Morbus Osler Foundation (to A.L.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Loewer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Huang, Z., Loewer, A. (2022). Generating Somatic Knockout Cell Lines with CRISPR-Cas9 Technology to Investigate SMAD Signaling. In: Zi, Z., Liu, X. (eds) TGF-Beta Signaling. Methods in Molecular Biology, vol 2488. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2277-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2277-3_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2276-6

  • Online ISBN: 978-1-0716-2277-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics