Skip to main content

Structural Characterization of Multienzyme Assemblies: An Overview

  • Protocol
  • First Online:
Multienzymatic Assemblies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2487))

Abstract

Multienzyme assemblies have attracted significant attention in recent years for use in industrial applications instead of single enzymes. Owing to their ability to catalyze cascade reactions, multienzyme assemblies have become inspirational tools for the in vitro construction of multienzyme molecular machines. The use of such molecular machines could offer several advantages such as fewer side reactions, a high product yield, a fast reaction speed, easy product separation, a tolerable toxic environment, and robust system operability compared to current microbial cell catalytic systems. Besides, they can provide all the benefits found in the use of enzymes, including reusability, catalytic efficiency, and specificity. Similar to single enzymes, multienzyme assemblies could offer economical and environmentally friendly alternatives to conventional catalysts and play a central role as biocatalysts in green chemistry applications. However, detailed characterization of multienzyme assemblies and a full understanding of their mechanistic details are required for their efficient use in industrial biotransformations. Since the determination of the first enzyme structure in 1965, structural information has played a pivotal role in the characterization of enzymes and elucidation of their structure–function relationship. Among the structural biology techniques, X-ray crystallography has provided key mechanistic details into multienzyme assemblies. Here, the structural characterization of multienzyme assemblies is reviewed and several examples are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sheldon RA, Woodley JM (2018) Role of biocatalysis in sustainable chemistry. Chem Rev 118:801–838. https://doi.org/10.1021/acs.chemrev.7b00203

    Article  CAS  PubMed  Google Scholar 

  2. Cipolatti EP, Cerqueira Pinto MC, Henriques RO et al (2019) Enzymes in green chemistry: the state of the art in chemical transformations. In: Advances in enzyme technology. Elsevier, Amsterdam, pp 137–151

    Chapter  Google Scholar 

  3. Heckmann CM, Paradisi F (2020) Looking back: a short history of the discovery of enzymes and how they became powerful chemical tools. ChemCatChem 12:6082–6102. https://doi.org/10.1002/cctc.202001107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Giannakopoulou A, Gkantzou E, Polydera A, Stamatis H (2020) Multienzymatic nanoassemblies: recent progress and applications. Trends Biotechnol 38:202–216. https://doi.org/10.1016/j.tibtech.2019.07.010

    Article  CAS  PubMed  Google Scholar 

  5. Ricca E, Brucher B, Schrittwieser JH (2011) Multi-enzymatic cascade reactions: overview and perspectives. Adv Synth Catal 353:2239–2262. https://doi.org/10.1002/adsc.201100256

    Article  CAS  Google Scholar 

  6. Hwang ET, Lee S (2019) Multienzymatic cascade reactions via enzyme complex by immobilization. ACS Catal 9:4402–4425. https://doi.org/10.1021/acscatal.8b04921

    Article  CAS  Google Scholar 

  7. Jiang Y, Zhang X, Yuan H et al (2021) Research progress and the biotechnological applications of multienzyme complex. Appl Microbiol Biotechnol 105:1759–1777. https://doi.org/10.1007/s00253-021-11121-4

    Article  CAS  PubMed  Google Scholar 

  8. Blow D (2000) So do we understand how enzymes work? Structure 8:R77–R81. https://doi.org/10.1016/S0969-2126(00)00125-8

    Article  CAS  PubMed  Google Scholar 

  9. Pauling L (1948) Nature of forces between large molecules of biological interest. Nature 161:707–709. https://doi.org/10.1038/161707a0

    Article  CAS  PubMed  Google Scholar 

  10. Blake CC, Koenig DF, Mair GA et al (1965) Structure of hen egg-white lysozyme. A three-dimensional Fourier synthesis at 2 Å resolution. Nature 206:757–761. https://doi.org/10.1038/206757a0

    Article  CAS  PubMed  Google Scholar 

  11. Johnson LN, Phillips DC (1965) Structure of some crystalline lysozyme-inhibitor complexes determined by X-ray analysis at 6 Angstrom resolution. Nature 206:761–763. https://doi.org/10.1038/206761a0

    Article  CAS  PubMed  Google Scholar 

  12. Steitz TA, Ludwig ML, Quiocho FA, Lipscomb WN (1967) The structure of carboxypeptidase A: V. studies of enzyme-substrate and enzyme-inhibitor complexes at 6 Å resolution. J Biol Chem 242:4662–4668. https://doi.org/10.1016/S0021-9258(18)99508-6

    Article  CAS  PubMed  Google Scholar 

  13. Kartha G, Bello J, Harker D (1967) Tertiary structure of ribonuclease. Nature 213:862–865. https://doi.org/10.1038/213862a0

    Article  CAS  PubMed  Google Scholar 

  14. Kraut J (1977) Serine proteases: structure and mechanism of catalysis. Annu Rev Biochem 46:331–358. https://doi.org/10.1146/annurev.bi.46.070177.001555

    Article  CAS  PubMed  Google Scholar 

  15. Schneider G, Lindqvist Y, Brändén CI, Lorimer G (1986) Three-dimensional structure of ribulose-1,5-bisphosphate carboxylase/oxygenase from Rhodospirillum rubrum at 2.9 A resolution. EMBO J 5:3409–3415

    Article  CAS  Google Scholar 

  16. Andersson I, Knight S, Schneider G et al (1989) Crystal structure of the active site of ribulose-bisphosphate carboxylase. Nature 337:229–234. https://doi.org/10.1038/337229a0

    Article  CAS  Google Scholar 

  17. McPhalen CA, Vincent MG, Picot D et al (1992) Domain closure in mitochondrial aspartate aminotransferase. J Mol Biol 227:197–213

    Article  CAS  Google Scholar 

  18. Fletterick RJ, Sprang SR (1982) Glycogen phosphorylase structures and function. Acc Chem Res 15:361–369. https://doi.org/10.1021/ar00083a004

    Article  CAS  Google Scholar 

  19. Irvine HS, Shaw SM, Paton A, Carrey EA (1997) A reciprocal allosteric mechanism for efficient transfer of labile intermediates between active sites in CAD, the mammalian pyrimidine-biosynthetic multienzyme polypeptide. Eur J Biochem 247:1063–1073. https://doi.org/10.1111/j.1432-1033.1997.01063.x

    Article  CAS  PubMed  Google Scholar 

  20. Krause KL, Volz KW, Lipscomb WN (1987) 2.5 A structure of aspartate carbamoyltransferase complexed with the bisubstrate analog N-(phosphonacetyl)-L-aspartate. J Mol Biol 193:527–553. https://doi.org/10.1016/0022-2836(87)90265-8

    Article  CAS  PubMed  Google Scholar 

  21. Evans PR, Farrants GW, Hudson PJ (1981) Phosphofructokinase: structure and control. Philos Trans R Soc Lond Ser B Biol Sci 293:53–62. https://doi.org/10.1098/rstb.1981.0059

    Article  CAS  Google Scholar 

  22. Hajdu J, Acharya KR, Stuart DI et al (1987) Catalysis in the crystal: synchrotron radiation studies with glycogen phosphorylase b. EMBO J 6:539–546

    Article  CAS  Google Scholar 

  23. Hyde CC, Ahmed SA, Padlan EA et al (1988) Three-dimensional structure of the tryptophan synthase alpha 2 beta 2 multienzyme complex from Salmonella typhimurium. J Biol Chem 263:17857–17871

    Article  CAS  Google Scholar 

  24. Hyde CC, Miles EW (1990) The tryptophan synthase multienzyme complex: exploring structure-function relationships with X-Ray Crystallography and mutagenesis. Nat Biotechnol 8:27–32

    Article  CAS  Google Scholar 

  25. Hall PR, Zheng R, Antony L et al (2004) Transcarboxylase 5S structures: assembly and catalytic mechanism of a multienzyme complex subunit. EMBO J 23:3621–3631. https://doi.org/10.1038/sj.emboj.7600373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Marrott NL, Marshall JJT, Svergun DI et al (2012) The catalytic core of an archaeal 2-oxoacid dehydrogenase multienzyme complex is a 42-mer protein assembly. FEBS J 279:713–723. https://doi.org/10.1111/j.1742-4658.2011.08461.x

    Article  CAS  PubMed  Google Scholar 

  27. Frank RAW, Pratap JV, Pei XY et al (2005) The molecular origins of specificity in the assembly of a multienzyme complex. Structure 13:1119–1130. https://doi.org/10.1016/j.str.2005.04.021

    Article  CAS  PubMed  Google Scholar 

  28. Tsuchiya D, Shimizu N, Ishikawa M et al (2006) Ligand-induced domain rearrangement of fatty acid beta-oxidation multienzyme complex. Structure 14:237–246. https://doi.org/10.1016/j.str.2005.10.011

    Article  CAS  PubMed  Google Scholar 

  29. Miles EW, Rhee S, Davies DR (1999) The molecular basis of substrate channeling*. J Biol Chem 274:12193–12196. https://doi.org/10.1074/jbc.274.18.12193

    Article  CAS  PubMed  Google Scholar 

  30. Zhang Y-HP (2011) Substrate channeling and enzyme complexes for biotechnological applications. Biotechnol Adv 29:715–725. https://doi.org/10.1016/j.biotechadv.2011.05.020

    Article  CAS  PubMed  Google Scholar 

  31. Sweetlove LJ, Fernie AR (2018) The role of dynamic enzyme assemblies and substrate channelling in metabolic regulation. Nat Commun 9:2136. https://doi.org/10.1038/s41467-018-04543-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Oh J-H, Hyun J-Y, Chen S-J, Varshavsky A (2020) Five enzymes of the Arg/N-degron pathway form a targeting complex: the concept of superchanneling. Proc Natl Acad Sci U S A 117:10778–10788. https://doi.org/10.1073/pnas.2003043117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen Y, Ke G, Ma Y et al (2018) A synthetic light-driven substrate channeling system for precise regulation of enzyme cascade activity based on DNA Origami. J Am Chem Soc 140:8990–8996. https://doi.org/10.1021/jacs.8b05429

    Article  CAS  PubMed  Google Scholar 

  34. Knighton DR, Kan CC, Howland E et al (1994) Structure of and kinetic channelling in bifunctional dihydrofolate reductase-thymidylate synthase. Nat Struct Biol 1:186–194. https://doi.org/10.1038/nsb0394-186

    Article  CAS  PubMed  Google Scholar 

  35. Atreya CE, Johnson EF, Williamson J et al (2003) Probing electrostatic channeling in protozoal bifunctional thymidylate synthase-dihydrofolate reductase using site-directed mutagenesis. J Biol Chem 278:28901–28911. https://doi.org/10.1074/jbc.M212689200

    Article  CAS  PubMed  Google Scholar 

  36. Anderson KS (2017) Understanding the molecular mechanism of substrate channeling and domain communication in protozoal bifunctional TS-DHFR. Protein Eng Des Sel 30:253–261. https://doi.org/10.1093/protein/gzx004

    Article  CAS  PubMed  Google Scholar 

  37. Shatalin K, Lebreton S, Rault-Leonardon M et al (1999) Electrostatic channeling of oxaloacetate in a fusion protein of porcine citrate synthase and porcine mitochondrial malate dehydrogenase. Biochemistry 38:881–889. https://doi.org/10.1021/bi982195h

    Article  CAS  PubMed  Google Scholar 

  38. Wu F, Minteer S (2015) Krebs cycle metabolon: structural evidence of substrate channeling revealed by cross-linking and mass spectrometry. Angew Chem Int Ed Engl 54:1851–1854. https://doi.org/10.1002/anie.201409336

    Article  CAS  PubMed  Google Scholar 

  39. Sathyanarayanan N, Cannone G, Gakhar L et al (2019) Molecular basis for metabolite channeling in a ring opening enzyme of the phenylacetate degradation pathway. Nat Commun 10:4127. https://doi.org/10.1038/s41467-019-11931-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Weeks A, Lund L, Raushel FM (2006) Tunneling of intermediates in enzyme-catalyzed reactions. Curr Opin Chem Biol 10:465–472. https://doi.org/10.1016/j.cbpa.2006.08.008

    Article  CAS  PubMed  Google Scholar 

  41. Marques SM, Daniel L, Buryska T et al (2017) Enzyme tunnels and gates as relevant targets in drug design. Med Res Rev 37:1095–1139. https://doi.org/10.1002/med.21430

    Article  CAS  PubMed  Google Scholar 

  42. Raushel FM, Thoden JB, Holden HM (2003) Enzymes with molecular tunnels. Acc Chem Res 36:539–548. https://doi.org/10.1021/ar020047k

    Article  CAS  PubMed  Google Scholar 

  43. Anderson KS, Miles EW, Johnson KA (1991) Serine modulates substrate channeling in tryptophan synthase. A novel intersubunit triggering mechanism. J Biol Chem 266:8020–8033. https://doi.org/10.1016/S0021-9258(18)92934-0

    Article  CAS  PubMed  Google Scholar 

  44. Dunn MF, Niks D, Ngo H et al (2008) Tryptophan synthase: the workings of a channeling nanomachine. Trends Biochem Sci 33:254–264. https://doi.org/10.1016/j.tibs.2008.04.008

    Article  CAS  PubMed  Google Scholar 

  45. Thoden JB, Wesenberg G, Raushel FM, Holden HM (1999) Carbamoyl phosphate synthetase: closure of the B-domain as a result of nucleotide binding. Biochemistry 38:2347–2357. https://doi.org/10.1021/bi982517h

    Article  CAS  PubMed  Google Scholar 

  46. Binda C, Bossi RT, Wakatsuki S et al (2000) Cross-talk and ammonia channeling between active centers in the unexpected domain arrangement of glutamate synthase. Structure 8:1299–1308. https://doi.org/10.1016/S0969-2126(00)00540-2

    Article  CAS  PubMed  Google Scholar 

  47. Chaudhuri BN, Lange SC, Myers RS et al (2001) Crystal structure of imidazole glycerol phosphate synthase: a tunnel through a (β/α)8 barrel joins two active sites. Structure 9:987–997

    Article  CAS  Google Scholar 

  48. Zein F, Zhang Y, Kang YN et al (2006) Structural insights into the mechanism of the PLP synthase holoenzyme from Thermotoga maritima. Biochemistry 45:14609–14620. https://doi.org/10.1021/bi061464y

    Article  CAS  PubMed  Google Scholar 

  49. Mouilleron S, Badet-Denisot M-A, Golinelli-Pimpaneau B (2006) Glutamine binding opens the ammonia channel and activates glucosamine-6P synthase. J Biol Chem 281:4404–4412. https://doi.org/10.1074/jbc.M511689200

    Article  CAS  PubMed  Google Scholar 

  50. Larsen TM, Boehlein SK, Schuster SM et al (1999) Three-dimensional structure of Escherichia coli asparagine synthetase B: a short journey from substrate to product. Biochemistry 38:16146–16157. https://doi.org/10.1021/bi9915768

    Article  CAS  PubMed  Google Scholar 

  51. Nakamura A, Yao M, Chimnaronk S et al (2006) Ammonia channel couples glutaminase with transamidase reactions in GatCAB. Science 312:1954–1958. https://doi.org/10.1126/science.1127156

    Article  CAS  PubMed  Google Scholar 

  52. Li L, Adachi M, Yu J et al (2019) Neutron crystallographic study of heterotrimeric glutamine amidotransferase CAB. Acta Crystallogr F Struct Biol Commun 75:193–196. https://doi.org/10.1107/S2053230X19000220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Krahn JM, Kim JH, Burns MR et al (1997) Coupled formation of an amidotransferase interdomain ammonia channel and a phosphoribosyltransferase active site. Biochemistry 36:11061–11068. https://doi.org/10.1021/bi9714114

    Article  CAS  PubMed  Google Scholar 

  54. Perham RN (2000) Swinging arms and swinging domains in multifunctional enzymes: catalytic machines for multistep reactions. Annu Rev Biochem 69:961–1004. https://doi.org/10.1146/annurev.biochem.69.1.961

    Article  CAS  PubMed  Google Scholar 

  55. Dardel F, Davis AL, Laue ED, Perham RN (1993) Three-dimensional structure of the lipoyl domain from Bacillus stearothermophilus pyruvate dehydrogenase multienzyme complex. J Mol Biol 229:1037–1048. https://doi.org/10.1006/jmbi.1993.1103

    Article  CAS  PubMed  Google Scholar 

  56. Athappilly FK, Hendrickson WA (1995) Structure of the biotinyl domain of acetyl-coenzyme A carboxylase determined by MAD phasing. Structure 3:1407–1419. https://doi.org/10.1016/s0969-2126(01)00277-5

    Article  CAS  PubMed  Google Scholar 

  57. Farmer R, Thomas CM, Winn PJ (2019) Structure, function and dynamics in acyl carrier proteins. PLoS One 14:e0219435. https://doi.org/10.1371/journal.pone.0219435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Misson LE, Mindrebo JT, Davis TD et al (2020) Interfacial plasticity facilitates high reaction rate of E. coli FAS malonyl-CoA:ACP transacylase, FabD. Proc Natl Acad Sci U S A 117:24224–24233. https://doi.org/10.1073/pnas.2009805117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Robinson GC, Kaufmann M, Roux C, Fitzpatrick TB (2016) Structural definition of the lysine swing in Arabidopsis thaliana PDX1: intermediate channeling facilitating vitamin B6 biosynthesis. Proc Natl Acad Sci U S A 113:E5821–E5829. https://doi.org/10.1073/pnas.1608125113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bülow L, Mosbach K (1991) Multienzyme systems obtained by gene fusion. Trends Biotechnol 9:226–231. https://doi.org/10.1016/0167-7799(91)90075-s

    Article  PubMed  Google Scholar 

  61. Arai R, Ueda H, Kitayama A et al (2001) Design of the linkers which effectively separate domains of a bifunctional fusion protein. Protein Eng 14:529–532. https://doi.org/10.1093/protein/14.8.529

    Article  CAS  PubMed  Google Scholar 

  62. Schoffelen S, van Hest JCM (2013) Chemical approaches for the construction of multi-enzyme reaction systems. Curr Opin Struct Biol 23:613–621. https://doi.org/10.1016/j.sbi.2013.06.010

    Article  CAS  PubMed  Google Scholar 

  63. Wei X, Han P, You C (2020) Facilitation of cascade biocatalysis by artificial multi-enzyme complexes — A review. Chin J Chem Eng 28:2799–2809. https://doi.org/10.1016/j.cjche.2020.05.022

    Article  CAS  Google Scholar 

  64. Ribeiro LF, Furtado GP, Lourenzoni MR et al (2011) Engineering bifunctional laccase-Xylanase chimeras for improved catalytic performance. J Biol Chem 286:43026–43038. https://doi.org/10.1074/jbc.M111.253419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lerchner A, Daake M, Jarasch A, Skerra A (2016) Fusion of an alcohol dehydrogenase with an aminotransferase using a PAS linker to improve coupled enzymatic alcohol-to-amine conversion. Protein Eng Des Sel 29:557–562. https://doi.org/10.1093/protein/gzw039

    Article  CAS  PubMed  Google Scholar 

  66. Knott BC, Erickson E, Allen MD et al (2020) Characterization and engineering of a two-enzyme system for plastics depolymerization. Proc Natl Acad Sci U S A 24:202006753. https://doi.org/10.1073/pnas.2006753117

    Article  CAS  Google Scholar 

  67. Palm GJ, Reisky L, Böttcher D et al (2019) Structure of the plastic-degrading Ideonella sakaiensis MHETase bound to a substrate. Nat Commun 10:1717–1710. https://doi.org/10.1038/s41467-019-09326-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Liu Y, Hickey DP, Guo J-Y et al (2017) Substrate channeling in an artificial metabolon: a molecular dynamics blueprint for an experimental peptide bridge. ACS Catal 7:2486–2493. https://doi.org/10.1021/acscatal.6b03440

    Article  CAS  Google Scholar 

  69. Ozbakir HF, Garcia KE, Banta S (2018) Creation of a formate: malate oxidoreductase by fusion of dehydrogenase enzymes with PEGylated cofactor swing arms. Protein Eng Des Sel 31:103–108

    Article  CAS  Google Scholar 

  70. Yang YR, Fu J, Wootten S et al (2018) 2D enzyme cascade network with efficient substrate channeling by swinging arms. Chembiochem 19:212–216. https://doi.org/10.1002/cbic.201700613

    Article  CAS  PubMed  Google Scholar 

  71. Fu J, Yang YR, Johnson-Buck A et al (2014) Multi-enzyme complexes on DNA scaffolds capable of substrate channelling with an artificial swinging arm. Nat Nanotechnol 9:531–536. https://doi.org/10.1038/nnano.2014.100

    Article  CAS  PubMed  Google Scholar 

  72. Chiocchini C, Linne U, Stachelhaus T (2006) In vivo biocombinatorial synthesis of lipopeptides by COM domain-mediated reprogramming of the surfactin biosynthetic complex. Chem Biol 13:899–908. https://doi.org/10.1016/j.chembiol.2006.06.015

    Article  CAS  PubMed  Google Scholar 

  73. Reimer JM, Eivaskhani M, Harb I et al (2019) Structures of a dimodular nonribosomal peptide synthetase reveal conformational flexibility. Science 366:eaaw4388. https://doi.org/10.1126/science.aaw4388

    Article  CAS  PubMed  Google Scholar 

  74. Chapman HN, Fromme P, Barty A et al (2011) Femtosecond X-ray protein nanocrystallography. Nature 469:73–77. https://doi.org/10.1038/nature09750

    Article  CAS  Google Scholar 

  75. Schmidt M (2020) Reaction initiation in enzyme crystals by diffusion of substrate. Crystals 10:116. https://doi.org/10.3390/cryst10020116

    Article  CAS  Google Scholar 

  76. Keedy DA, Kenner LR, Warkentin M et al (2015) Mapping the conformational landscape of a dynamic enzyme by multitemperature and XFEL crystallography. elife 4:e07574. https://doi.org/10.7554/eLife.07574

    Article  PubMed  PubMed Central  Google Scholar 

  77. Schmidt M (2019) Time-resolved macromolecular crystallography at pulsed X-ray sources. Int J Mol Sci. https://doi.org/10.3390/ijms20061401

  78. Horrell S, Antonyuk SV, Eady RR et al (2016) Serial crystallography captures enzyme catalysis in copper nitrite reductase at atomic resolution from one crystal. IUCrJ 3:271–281

    Article  CAS  Google Scholar 

  79. Halsted TP, Yamashita K, Hirata K et al (2018) An unprecedented dioxygen species revealed by serial femtosecond rotation crystallography in copper nitrite reductase. IUCrJ 5:22–31

    Article  CAS  Google Scholar 

  80. Boutet S, Lomb L, Williams GJ et al (2012) High-resolution protein structure determination by serial femtosecond crystallography. Science 337:362–364

    Article  CAS  Google Scholar 

  81. Tenboer J, Basu S, Zatsepin N et al (2014) Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein. Science 346:1242–1246. https://doi.org/10.1126/science.1259357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Orville AM (2020) Recent results in time resolved serial femtosecond crystallography at XFELs. Curr Opin Struct Biol 65:193–208. https://doi.org/10.1016/j.sbi.2020.08.011

    Article  CAS  PubMed  Google Scholar 

  83. Ishigami I, Lewis-Ballester A, Echelmeier A et al (2019) Snapshot of an oxygen intermediate in the catalytic reaction of cytochrome C oxidase. Proc Natl Acad Sci U S A 116:3572–3577. https://doi.org/10.1073/pnas.1814526116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Horrell S, Kekilli D, Sen K et al (2018) Enzyme catalysis captured using multiple structures from one crystal at varying temperatures. IUCrJ 5:283–292. https://doi.org/10.1107/S205225251800386X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Keedy DA (2019) Journey to the center of the protein: allostery from multitemperature multiconformer X-ray crystallography. Acta Crystallogr D Struct Biol 75:123–137. https://doi.org/10.1107/S2059798318017941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Olmos JL, Pandey S, Martin-Garcia JM et al (2018) Enzyme intermediates captured “on the fly” by mix-and-inject serial crystallography. BMC Biol 16:1–15. https://doi.org/10.1186/s12915-018-0524-5

    Article  CAS  Google Scholar 

  87. Kern J, Chatterjee R, Young ID et al (2018) Structures of the intermediates of Kok’s photosynthetic water oxidation clock. Nature 563:421–425

    Article  CAS  Google Scholar 

  88. Klán P, Šolomek T, Bochet CG et al (2013) Photoremovable protecting groups in chemistry and biology: reaction mechanisms and efficacy. Chem Rev 113:119–191. https://doi.org/10.1021/cr300177k

    Article  CAS  PubMed  Google Scholar 

  89. Moffat K, Szebenyi D, Bilderback D (1984) X-ray laue diffraction from protein crystals. Science 223:1423–1425. https://doi.org/10.1126/science.223.4643.1423

    Article  CAS  PubMed  Google Scholar 

  90. Hajdu J, Machin PA, Campbell JW et al (1987) Millisecond X-ray diffraction and the first electron density map from Laue photographs of a protein crystal. Nature 329:178–181. https://doi.org/10.1038/329178a0

    Article  CAS  PubMed  Google Scholar 

  91. Hajdu J, Johnson LN (1990) Progress with Laue diffraction studies on protein and virus crystals. Biochemistry 29:1669–1678. https://doi.org/10.1021/bi00459a001

    Article  CAS  PubMed  Google Scholar 

  92. Scheidig AJ, Sanchez-Llorente A, Lautwein A et al (1994) Crystallographic studies on p21(H-ras) using the synchrotron Laue method: improvement of crystal quality and monitoring of the GTPase reaction at different time points. Acta Crystallogr D Biol Crystallogr 50:512–520. https://doi.org/10.1107/S090744499301443X

    Article  CAS  PubMed  Google Scholar 

  93. Mehrabi P, Schulz EC, Dsouza R et al (2019) Time-resolved crystallography reveals allosteric communication aligned with molecular breathing. Science 365:1167–1170. https://doi.org/10.1126/science.aaw9904

    Article  CAS  PubMed  Google Scholar 

  94. Ladenstein R, Fischer M, Bacher A (2013) The lumazine synthase/riboflavin synthase complex: shapes and functions of a highly variable enzyme system. FEBS J 280:2537–2563. https://doi.org/10.1111/febs.12255

    Article  CAS  PubMed  Google Scholar 

  95. Ævarsson A, Seger K, Turley S et al (1999) Crystal structure of 2-oxoisovalerate and dehydrogenase and the architecture of 2-oxo acid dehydrogenase multienzyme complexes. Nat Struct Mol Biol 6:785–792. https://doi.org/10.1038/11563

    Article  Google Scholar 

  96. Artiukhov AV, Graf AV, Bunik VI (2016) Directed regulation of multienzyme complexes of 2-Oxo acid dehydrogenases using phosphonate and phosphinate analogs of 2-Oxo acids. Biochemistry (Mosc) 81:1498–1521. https://doi.org/10.1134/S0006297916120129

    Article  CAS  Google Scholar 

  97. Frank RAW, Titman CM, Pratap JV et al (2004) A molecular switch and proton wire synchronize the active sites in thiamine enzymes. Science 306:872–876

    Article  CAS  Google Scholar 

  98. Ishikawa M, Tsuchiya D, Oyama T et al (2004) Structural basis for channelling mechanism of a fatty acid β-oxidation multienzyme complex. EMBO J 23:2745–2754. https://doi.org/10.1038/sj.emboj.7600298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Douce R, Bourguignon J, Neuburger M, Rébeillé F (2001) The glycine decarboxylase system: a fascinating complex. Trends Plant Sci 6:167–176

    Article  CAS  Google Scholar 

  100. St Maurice M, Reinhardt L, Surinya KH et al (2007) Domain architecture of pyruvate carboxylase, a biotin-dependent multifunctional enzyme. Science 317:1076–1079

    Article  CAS  Google Scholar 

  101. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  Google Scholar 

  102. Pravda L, Sehnal D, Svobodová Vařeková R et al (2018) ChannelsDB: database of biomacromolecular tunnels and pores. Nucleic Acids Res 46:D399–D405. https://doi.org/10.1093/nar/gkx868

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastassios C. Papageorgiou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Papageorgiou, A.C. (2022). Structural Characterization of Multienzyme Assemblies: An Overview. In: Stamatis, H. (eds) Multienzymatic Assemblies. Methods in Molecular Biology, vol 2487. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2269-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2269-8_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2268-1

  • Online ISBN: 978-1-0716-2269-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics