Skip to main content

Quantifying Cardiomyocyte Proliferation and Nucleation to Assess Mammalian Cardiac Regeneration

  • Protocol
  • First Online:
Cardiac Tissue Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2485))

Abstract

Neonatal mice display a remarkable ability to regenerate their heart following an injury during the first week of life. A key facet of successful cardiac regeneration is the proliferation of cardiomyocytes to replace the lost cells. Stimulating cardiomyocyte proliferation in the adult heart is a very promising approach to restore cardiac structure and function following injury. Here, we outline our approach to assess cardiomyocyte proliferation following a myocardial injury via the cell cycle markers phospho-histone H3 and Aurora B. We additionally discuss how we assess successful regeneration using wheat germ agglutinin to measure cardiomyocyte size, nuclear staining to quantify cardiomyocyte nucleation, and Trichrome staining to identify myocardial regeneration and scarring in the myocardium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jopling C, Sleep E, Raya M, Marti M, Raya A, Izpisua Belmonte JC (2010) Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464(7288):606–609. https://doi.org/10.1038/nature08899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Laube F, Heister M, Scholz C, Borchardt T, Braun T (2006) Re-programming of newt cardiomyocytes is induced by tissue regeneration. J Cell Sci 119(22):4719–4729. https://doi.org/10.1242/jcs.03252

    Article  CAS  PubMed  Google Scholar 

  3. Becker RO, Chapin S, Sherry R (1974) Regeneration of the ventricular myocardium in amphibians. Nature 248(5444):145–147. https://doi.org/10.1038/248145a0

    Article  CAS  PubMed  Google Scholar 

  4. Lutgens E, Daemen MJAP, de Muinck ED, Debets J, Leenders P, Smits JFM (1999) Chronic myocardial infarction in the mouse: cardiac structural and functional change1. Cardiovasc Res 41(3):586–593. https://doi.org/10.1016/s0008-6363(98)00216-8

    Article  CAS  PubMed  Google Scholar 

  5. Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, Sadek HA (2011) Transient regenerative potential of the neonatal mouse heart. Science 331(6020):1078–1080. https://doi.org/10.1126/science.1200708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mahmoud AI, Porrello ER, Kimura W, Olson EN, Sadek HA (2014) Surgical models for cardiac regeneration in neonatal mice. Nat Protoc 9(2):305–311. https://doi.org/10.1038/nprot.2014.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li Y, He L, Huang X, Bhaloo SI, Zhao H, Zhang S, Pu W, Tian X, Li Y, Liu Q, Yu W, Zhang L, Liu X, Liu K, Tang J, Zhang H, Cai D, Ralf AH, Xu Q, Lui KO, Zhou B (2018) Genetic lineage tracing of nonmyocyte population by dual recombinases. Circulation 138(8):793–805. https://doi.org/10.1161/CIRCULATIONAHA.118.034250

    Article  CAS  PubMed  Google Scholar 

  8. Alkass K, Panula J, Westman M, Wu T-D, Guerquin-Kern J-L, Bergmann O (2015) No evidence for cardiomyocyte number expansion in preadolescent mice. Cell 163(4):1026–1036. https://doi.org/10.1016/j.cell.2015.10.035

    Article  CAS  PubMed  Google Scholar 

  9. Derks W, Bergmann O (2020) Polyploidy in cardiomyocytes. Circ Res 126(4):552–565. https://doi.org/10.1161/CIRCRESAHA.119.315408

    Article  CAS  PubMed  Google Scholar 

  10. Mohamed TMA, Ang Y-S, Radzinsky E, Zhou P, Huang Y, Elfenbein A, Foley A, Magnitsky S, Srivastava D (2018) Regulation of cell cycle to stimulate adult cardiomyocyte proliferation and cardiac regeneration. Cell 173(1):104–116. e112. https://doi.org/10.1016/j.cell.2018.02.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Alvarez R Jr, Wang BJ, Quijada PJ, Avitabile D, Ho T, Shaitrit M, Chavarria M, Firouzi F, Ebeid D, Monsanto MM, Navarrete N, Moshref M, Siddiqi S, Broughton KM, Bailey BA, Gude NA, Sussman MA (2019) Cardiomyocyte cell cycle dynamics and proliferation revealed through cardiac-specific transgenesis of fluorescent ubiquitinated cell cycle indicator (FUCCI). J Mol Cell Cardiol 127:154–164. https://doi.org/10.1016/j.yjmcc.2018.12.007

    Article  CAS  PubMed  Google Scholar 

  12. Uribe V, Ramadass R, Dogra D, Rasouli SJ, Gunawan F, Nakajima H, Chiba A, Reischauer S, Mochizuki N, Stainier DYR (2018) In vivo analysis of cardiomyocyte proliferation during trabeculation. Development 145(14):dev164194. https://doi.org/10.1242/dev.164194

    Article  CAS  PubMed  Google Scholar 

  13. Choi W-Y, Gemberling M, Wang J, Holdway JE, Shen M-C, Karlstrom RO, Poss KD (2013) In vivo monitoring of cardiomyocyte proliferation to identify chemical modifiers of heart regeneration. Development 140(3):660–666. https://doi.org/10.1242/dev.088526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Patterson M, Barske L, Van Handel B, Rau CD, Gan P, Sharma A, Parikh S, Denholtz M, Huang Y, Yamaguchi Y, Shen H, Allayee H, Crump JG, Force TI, Lien CL, Makita T, Lusis AJ, Kumar SR, Sucov HM (2017) Frequency of mononuclear diploid cardiomyocytes underlies natural variation in heart regeneration. Nat Genet 49(9):1346–1353. https://doi.org/10.1038/ng.3929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gonzalez-Rosa JM, Sharpe M, Field D, Soonpaa MH, Field LJ, Burns CE, Burns CG (2018) Myocardial polyploidization creates a barrier to heart regeneration in Zebrafish. Dev Cell 44(4):433–446. e437. https://doi.org/10.1016/j.devcel.2018.01.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Han L, Choudhury S, Mich-Basso JD, Ammanamanchi N, Ganapathy B, Suresh S, Khaladkar M, Singh J, Maehr R, Zuppo DA, Kim J, Eberwine JH, Wyman SK, Wu YL, Kuhn B (2020) Lamin B2 levels regulate polyploidization of cardiomyocyte nuclei and myocardial regeneration. Dev Cell 53(1):42–59.e11. https://doi.org/10.1016/j.devcel.2020.01.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kolk MV, Meyberg D, Deuse T, Tang-Quan KR, Robbins RC, Reichenspurner H, Schrepfer S (2009) LAD-ligation: a murine model of myocardial infarction. J Vis Exp (32). https://doi.org/10.3791/1438

  18. Reichert K, Colantuono B, McCormack I, Rodrigues F, Pavlov V, Abid MR (2017) Murine Left Anterior Descending (LAD) coronary artery ligation: an improved and simplified model for myocardial infarction. J Vis Exp 122:55353. https://doi.org/10.3791/55353

    Article  Google Scholar 

  19. Lugrin J, Parapanov R, Krueger T, Liaudet L (2019) Murine myocardial infarction model using permanent ligation of left anterior descending coronary artery. J Vis Exp (150). https://doi.org/10.3791/59591

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed I. Mahmoud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Brandt, E.B., Mahmoud, A.I. (2022). Quantifying Cardiomyocyte Proliferation and Nucleation to Assess Mammalian Cardiac Regeneration. In: Coulombe, K.L., Black III, L.D. (eds) Cardiac Tissue Engineering. Methods in Molecular Biology, vol 2485. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2261-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2261-2_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2260-5

  • Online ISBN: 978-1-0716-2261-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics