Skip to main content

Production of Recombinant Glycoproteins in Nicotiana tabacum BY-2 Suspension Cells

  • Protocol
  • First Online:
Recombinant Proteins in Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2480))

Abstract

This protocol describes a robust method to obtain transgenic Nicotiana tabacum BY-2 cells that produce glycoproteins of interest via Agrobacterium tumefaciens transformation. Compared to biolistics-based transformation, this procedure requires only standard laboratory equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Santos RB, Abranches R, Fischer R, Sack M, Holland T (2016) Putting the spotlight back on plant suspension cultures. Front Plant Sci 7:297. https://doi.org/10.3389/fpls.2016.00297

    Article  PubMed  PubMed Central  Google Scholar 

  2. Tekoah Y, Shulman A, Kizhner T, Ruderfer I, Fux L, Nataf Y, Bartfeld D, Ariel T, Gingis-Velitski S, Hanania U, Shaaltiel Y (2015) Large-scale production of pharmaceutical proteins in plant cell culture-the protalix experience. Plant Biotechnol J 13:1199–1208. https://doi.org/10.1111/pbi.12428

    Article  CAS  PubMed  Google Scholar 

  3. An G (1985) High efficiency transformation of cultured tobacco cells. Plant Physiol 79:568–570. https://doi.org/10.1104/pp.79.2.568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rempel HC, Nelson LM (1995) Analysis of conditions for agrobacterium-mediated transformation of tobacco cells in suspension. Transgenic Res 4:199–207. https://doi.org/10.1007/BF01968785

    Article  CAS  Google Scholar 

  5. Shimoda N, Toyoda-Yamamoto A, Nagamine J, Usami S, Katayama M, Sakagami Y, Machida Y (1990) Control of expression of Agrobacterium vir genes by synergistic actions of phenolic signal molecules and monosaccharides. Proc Natl Acad Sci U S A 87:6684–6688. https://doi.org/10.1073/pnas.87.17.6684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Geelen DNV, Inze DG (2001) A bright future for the bright yellow-2 cell culture. Plant Physiol 127:1375–1379

    Article  CAS  Google Scholar 

  7. van der Fits L, Deakin EA, Hoge JHC, Memelink J (2000) The ternary transformation system: constitutive virG on a compatible plasmid dramatically increases Agrobacterium-mediated plant transformation. Plant Mol Biol 43:495–502

    Article  Google Scholar 

  8. Scheeren-Groot EP, Rodenburg KW, den Dulk-Ras A, Turk SC, Hooykaas PJ (1994) Mutational analysis of the transcriptional activator VirG of Agrobacterium tumefaciens. J Bacteriol 176:6418–6426. https://doi.org/10.1128/jb.176.21.6418-6426.1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lefèvre F, Fourmeau J, Pottier M, Baijot A, Cornet T, Abadía J, Álvarez-Fernández A, Boutry M (2018) The Nicotiana tabacum ABC transporter NtPDR3 secretes O-methylated coumarins in response to iron deficiency. J Exp Bot 69:4419–4431. https://doi.org/10.1093/jxb/ery221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pierman B, Toussaint F, Bertin A, Lévy D, Smargiasso N, De Pauw E, Boutry M (2017) Activity of the purified plant ABC transporter NtPDR1 is stimulated by diterpenes and sesquiterpenes involved in constitutive and induced defenses. J Biol Chem 292:19491–19502. https://doi.org/10.1074/jbc.M117.811935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Toussaint F, Pierman B, Bertin A, Lévy D, Boutry M (2017) Purification and biochemical characterization of NpABCG5/NpPDR5, a plant pleiotropic drug resistance transporter expressed in Nicotiana tabacum BY-2 suspension cells. Biochem J 474:1689–1703. https://doi.org/10.1042/BCJ20170108

    Article  CAS  PubMed  Google Scholar 

  12. Niczyj M, Champagne A, Alam I, Nader J, Boutry M (2016) Expression of a constitutively activated plasma membrane H+-ATPase in Nicotiana tabacum BY-2 cells results in cell expansion. Planta 244:1109–1124. https://doi.org/10.1007/s00425-016-2571-x

    Article  CAS  PubMed  Google Scholar 

  13. Crouzet J, Roland J, Peeters E, Trombik T, Ducos E, Nader J, Boutry M (2013) NtPDR1, a plasma membrane ABC transporter from Nicotiana tabacum, is involved in diterpene transport. Plant Mol Biol 82:181–192. https://doi.org/10.1007/s11103-013-0053-0

    Article  CAS  PubMed  Google Scholar 

  14. Piette AS, Derua R, Waelkens E, Boutry M, Duby G (2011) A phosphorylation in the C-terminal auto-inhibitory domain of the plant plasma membrane H+-ATPase activates the enzyme with no requirement for regulatory 14-3-3 proteins. J Biol Chem 286:18474–18482. https://doi.org/10.1074/jbc.M110.211953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bobik K, Duby G, Nizet Y, Vandermeeren C, Stiernet P, Kanczewska J, Boutry M (2010) Two widely expressed plasma membrane H+-ATPase isoforms of Nicotiana tabacum are differentially regulated by phosphorylation of their penultimate threonine. Plant J 62:291–301. https://doi.org/10.1111/j.1365-313X.2010.04147.x

    Article  CAS  PubMed  Google Scholar 

  16. Duby G, Poreba W, Piotrowiak D, Bobik K, Derua R, Waelkens E, Boutry M (2009) Activation of plant plasma membrane H+ -ATPase by 14-3-3 proteins is negatively controlled by two phosphorylation sites within the H+ -ATPase C-terminal region. J Biol Chem 284:4213–4221. https://doi.org/10.1074/jbc.M807311200

    Article  CAS  PubMed  Google Scholar 

  17. Grec S, Vanham D, De Ribaucourt JC, Purnelle B, Boutry M (2003) Identification of regulatory sequence elements within the transcription promoter region of NpABC1, a gene encoding a plant ABC transporter induced by diterpenes. Plant J 35:237–250. https://doi.org/10.1046/j.1365-313X.2003.01792.x

    Article  CAS  PubMed  Google Scholar 

  18. Lefebvre B, Batoko H, Duby G, Boutry M (2004) Targeting of a Nicotiana plumbaginifolia H+-ATPase to the plasma membrane is not by default and requires cytosolic structural determinants. Plant Cell 16:1772–1789. https://doi.org/10.1105/tpc.022277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Woloszynska M, Kanczewska J, Drabkin A, Maudoux O, Dambly S, Boutry M (2003) Function and regulation of the two major plant plasma membrane H+-ATPases. Ann N Y Acad Sci 986:198–203

    Article  CAS  Google Scholar 

  20. Bienert MD, Delannoy M, Navarre C, Boutry M (2012) NtSCP1 from tobacco is an extracellular serine carboxypeptidase III that has an impact on cell elongation. Plant Physiol 158:1220–1229. https://doi.org/10.1104/pp.111.192088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Navarre C, Sallets A, Gauthy E, Maîtrejean M, Magy B, Nader J, de Thozée CP, Crouzet J, Batoko H, Boutry M (2011) Isolation of heat shock-induced Nicotiana tabacum transcription promoters and their potential as a tool for plant research and biotechnology. Transgenic Res 20:799–810. https://doi.org/10.1007/s11248-010-9459-5

    Article  CAS  PubMed  Google Scholar 

  22. De Muynck B, Navarre C, Nizet Y, Stadlmann J, Boutry M (2009) Different subcellular localization and glycosylation for a functional antibody expressed in Nicotiana tabacum plants and suspension cells. Transgenic Res 18:467–482. https://doi.org/10.1007/s11248-008-9240-1

    Article  CAS  PubMed  Google Scholar 

  23. Magy B, Tollet J, Laterre R, Boutry M, Navarre C (2014) Accumulation of secreted antibodies in plant cell cultures varies according to the isotype, host species and culture conditions. Plant Biotechnol J 12:457–467. https://doi.org/10.1111/pbi.12152

    Article  CAS  PubMed  Google Scholar 

  24. Navarre C, Smargiasso N, Duvivier L, Nader J, Far J, De Pauw E, Boutry M (2017) N-glycosylation of an IgG antibody secreted by Nicotiana tabacum BY-2 cells can be modulated through co-expression of human β-1,4-galactosyltransferase. Transgenic Res 26:375–384. https://doi.org/10.1007/s11248-017-0013-6

    Article  CAS  PubMed  Google Scholar 

  25. Jacquet N, Navarre C, Desmecht D, Boutry M (2014) Hydrophobin fusion of an influenza virus hemagglutinin allows high transient expression in Nicotiana benthamiana, easy purification and immune response with neutralizing activity. PLoS One 9:e115944. https://doi.org/10.1371/journal.pone.0115944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Smargiasso N, Nader J, Rioux S, Mazzucchelli G, Boutry M, De Pauw E, Chaumont F, Navarre C (2019) Exploring the N-glycosylation profile of glycoprotein b from human cytomegalovirus expressed in CHO and nicotiana tabacum BY-2 cells. Int J Mol Sci 20:3741. https://doi.org/10.3390/ijms20153741

    Article  CAS  PubMed Central  Google Scholar 

  27. Mercx S, Smargiasso N, Chaumont F, De Pauw E, Boutry M, Navarre C (2017) Inactivation of the β(1,2)-xylosyltransferase and the α(1,3)-fucosyltransferase genes in Nicotiana tabacum BY-2 cells by a multiplex CRISPR/Cas9 strategy results in glycoproteins without plant-specific glycans. Front Plant Sci 8:403. https://doi.org/10.3389/fpls.2017.00403

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hanania U, Ariel T, Tekoah Y, Fux L, Sheva M, Gubbay Y, Weiss M, Oz D, Azulay Y, Turbovski A, Forster Y, Shaaltiel Y (2017) Establishment of a tobacco BY2 cell line devoid of plant-specific xylose and fucose as a platform for the production of biotherapeutic proteins. Plant Biotechnol J 15:1120–1129. https://doi.org/10.1111/pbi.12702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nagata T, Nemoto Y, Hasezawa S (1992) Tobacco by-2 cell-line as the Hela-cell in the cell biology of higher-plants. Int Rev Cytol 132:1–30

    Article  CAS  Google Scholar 

  30. Mattanovich D, Rüker F, da Cämara MA, Laimer M, Regner F, Steinkellner H, Himmler G, Katinger H (1989) Efficient transformation of agrobacterium spp. by eletroporation. Nucleic Acids Res 17:6747–6747. https://doi.org/10.1093/nar/17.16.6747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are especially grateful to Professor Marc Boutry for his constant interest in our research as well as his critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Chaumont .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Navarre, C., Chaumont, F. (2022). Production of Recombinant Glycoproteins in Nicotiana tabacum BY-2 Suspension Cells. In: Schillberg, S., Spiegel, H. (eds) Recombinant Proteins in Plants. Methods in Molecular Biology, vol 2480. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2241-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2241-4_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2240-7

  • Online ISBN: 978-1-0716-2241-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics