Skip to main content

Measuring αβ T-Cell Receptor-Mediated Mechanosensing Using Optical Tweezers Combined with Fluorescence Imaging

  • Protocol
  • First Online:
Optical Tweezers

Abstract

T-cell antigen receptors (TCRs) are mechanosensors, which initiate a signaling cascade upon ligand recognition resulting in T-cell differentiation, homeostasis, effector and regulatory functions. An optical trap combined with fluorescence permits direct monitoring of T-cell triggering in response to force application at various concentrations of peptide-bound major histocompatibility complex molecules (pMHC). The technique mimics physiological shear forces applied as cells crawl across antigen-presenting surfaces during immune surveillance. True single molecule studies performed on single cells profile force-bond lifetime, typically seen as a catch bond, and conformational change at the TCR–pMHC bond on the surface of the cell upon force loading. Together, activation and single molecule single cell studies provide chemical and physical triggering thresholds as well as insight into catch bond formation and quaternary structural changes of single TCRs. The present methods detail assay design, preparation, and execution, as well as data analysis. These methods may be applied to a wide range of pMHC–TCR interactions and have potential for adaptation to other receptor-ligand systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yin L, Scott-Browne J, Kappler JW et al (2012) T cells and their eons-old obsession with MHC. Immunol Rev 250:49–60. https://doi.org/10.1111/imr.12004

    Article  Google Scholar 

  2. Rudolph MG, Stanfield RL, Wilson IA (2006) How TCRs bind MHCs, peptides, and coreceptors. Annu Rev Immunol 24:419–466. https://doi.org/10.1146/annurev.immunol.23.021704.115658

    Article  Google Scholar 

  3. Wang J, Reinherz EL (2012) The structural basis of αβ T-lineage immune recognition: TCR docking topologies, mechanotransduction, and co-receptor function. Immunol Rev 250:102–119. https://doi.org/10.1111/j.1600-065X.2012.01161.x

    Article  Google Scholar 

  4. Sykulev Y, Joo M, Vturina I et al (1996) Evidence that a single peptide-MHC complex on a target cell can elicit a cytolytic T cell response. Immunity 4:565–571. https://doi.org/10.1016/S1074-7613(00)80483-5

    Article  Google Scholar 

  5. Huang J, Brameshuber M, Zeng X et al (2013) A single peptide-major histocompatibility complex ligand triggers digital cytokine secretion in CD4+ T cells. Immunity 39:846–857. https://doi.org/10.1016/j.immuni.2013.08.036

    Article  Google Scholar 

  6. Morath A, Schamel WW (2020) αβ and γδ T cell receptors: similar but different. J Leukoc Biol 107:1045–1055. https://doi.org/10.1002/JLB.2MR1219-233R

    Article  Google Scholar 

  7. Hayday AC (2019) γδ T cell update: Adaptate orchestrators of immune surveillance. J Immunol 203:311–320. https://doi.org/10.4049/jimmunol.1800934

    Article  Google Scholar 

  8. Jung Y, Riven I, Feigelson SW et al (2016) Three-dimensional localization of T-cell receptors in relation to microvilli using a combination of superresolution microscopies. Proc Natl Acad Sci U S A 113:E5916–E5924. https://doi.org/10.1073/pnas.1605399113

    Article  Google Scholar 

  9. Ananthakrishnan R, Ehrlicher A (2007) The forces behind cell movement. Int J Biol Sci 3:303–317

    Article  Google Scholar 

  10. Tibaldi EV, Salgia R, Reinherz EL (2002) CD2 molecules redistribute to the uropod during T cell scanning: implications for cellular activation and immune surveillance. Proc Natl Acad Sci U S A 99:7582–7587. https://doi.org/10.1073/pnas.112212699

    Article  ADS  Google Scholar 

  11. Ritter AT, Asano Y, Stinchcombe JC et al (2015) Actin depletion initiates events leading to granule secretion at the immunological synapse. Immunity 42:864–876. https://doi.org/10.1016/j.immuni.2015.04.013

    Article  Google Scholar 

  12. Dustin ML (2008) T-cell activation through immunological synapses and kinapses. Immunol Rev 221:77–89

    Article  Google Scholar 

  13. Yi J, Wu XS, Crites T, Hammer JA (2012) Actin retrograde flow and actomyosin II arc contraction drive receptor cluster dynamics at the immunological synapse in Jurkat T cells. Mol Biol Cell 23:834–852. https://doi.org/10.1091/mbc.E11-08-0731

    Article  Google Scholar 

  14. Feng Y, Brazin KN, Kobayashi E et al (2017) Mechanosensing drives acuity of αβ T-cell recognition. Proc Natl Acad Sci U S A 114:E8204. https://doi.org/10.1073/pnas.1703559114

    Article  Google Scholar 

  15. Bashoura KT, Gondarenko A, Chen H et al (2014) CD28 and CD3 have complementary roles in T-cell traction forces. Proc Natl Acad Sci U S A 111:2241–2246. https://doi.org/10.1073/pnas.1315606111

    Article  ADS  Google Scholar 

  16. Basu R, Whitlock BM, Husson J et al (2016) Cytotoxic T cells use mechanical force to potentiate target cell killing. Cell 165:100. https://doi.org/10.1016/j.cell.2016.01.021

    Article  Google Scholar 

  17. Chakraborty AK, Weiss A (2014) Insights into the initiation of TCR signaling. Nat Immunol 15:798–807

    Article  Google Scholar 

  18. Van Der Merwe PA, Dushek O (2011) Mechanisms for T cell receptor triggering. Nat Rev Immunol 11:47–55

    Article  Google Scholar 

  19. Feng Y, Reinherz EL, Lang MJ, Reinherz EL (2018) αb T cell receptor mechanosensing forces out serial engagement. Trends Immunol 39:596–609. https://doi.org/10.1016/j.it.2018.05.005

    Article  Google Scholar 

  20. Kim ST, Takeuchi K, Sun Z-YJ et al (2009) The αβ T cell receptor is an anisotropic mechanosensor. J Biol Chem 284:31028–31037. https://doi.org/10.1074/jbc.M109.052712

    Article  Google Scholar 

  21. Li Y-C, Chen B-M, Wu P-C et al (2010) Cutting edge: mechanical forces acting on T cells immobilized via the TCR complex can trigger TCR signaling. J Immunol 184:5959–5963. https://doi.org/10.4049/jimmunol.0900775

    Article  Google Scholar 

  22. Husson J, Chemin K, Bohineust A et al (2011) Force generation upon T cell receptor engagement. PLoS One 6:e19680. https://doi.org/10.1371/journal.pone.0019680

    Article  ADS  Google Scholar 

  23. Hu KH, Butte MJ (2016) T cell activation requires force generation. J Cell Biol 213:535–542. https://doi.org/10.1083/jcb.201511053

    Article  Google Scholar 

  24. Liu B, Chen W, Evavold BD, Zhu C (2014) Accumulation of dynamic catch bonds between TCR and agonist peptide-MHC triggers T cell signaling. Cell 157:357–368. https://doi.org/10.1016/j.cell.2014.02.053

    Article  Google Scholar 

  25. Bell GI (1978) Models for the specific adhesion of cells to cells. Science 200:618–627

    Article  ADS  Google Scholar 

  26. Kim ST, Shin Y, Brazin K et al (2012) TCR mechanobiology: torques and tunable structures linked to early T cell signaling. Front Immunol 3:76. https://doi.org/10.3389/fimmu.2012.00076

    Article  Google Scholar 

  27. Das DK, Feng Y, Mallis RJ et al (2015) Force-dependent transition in the T-cell receptor β-subunit allosterically regulates peptide discrimination and pMHC bond lifetime. Proc Natl Acad sci U S A 112:1517. https://doi.org/10.1073/pnas.1424829112

    Article  ADS  Google Scholar 

  28. Das DK, Mallis RJ, Duke-Cohan JS et al (2016) Pre-T cell receptors (pre-TCRs) leverage V complementarity determining regions (CDRs) and hydrophobic patch in mechanosensing thymic self-ligands. J Biol Chem 291:25292–25305. https://doi.org/10.1074/jbc.M116.752865

    Article  Google Scholar 

  29. Brazin KN, Mallis RJ, Arthanari H et al (2018) The T cell antigen receptor α transmembrane domain coordinates triggering through regulation of bilayer immersion and CD3 subunit associations. Immunity 49:829–841. https://doi.org/10.1016/j.immuni.2018.09.007

    Article  Google Scholar 

  30. Mallis RJ, Arthanari H, Lang MJ et al (2018) NMR-directed design of pre-TCRβ and pMHC molecules implies a distinct geometry for pre-TCR relative to αβTCR recognition of pMHC. J Biol Chem 293:754–766. https://doi.org/10.1074/jbc.M117.813493

    Article  Google Scholar 

  31. Moody AM, Xiong Y, Chang HC, Reinherz EL (2001) The CD8αβ co-receptor on double-positive thymocytes binds with differing affinities to the products of distinct class I MHC loci. Eur J Immunol 31:2791–2799. https://doi.org/10.1002/1521-4141(200109)31:9<2791::AID-IMMU2791>3.0.CO;2-X

    Article  Google Scholar 

  32. Brau RR, Tarsa PB, Ferrer JM et al (2006) Interlaced optical force-fluorescence measurements for single molecule biophysics. Biophys J 91:1069–1077. https://doi.org/10.1529/biophysj.106.082602

    Article  Google Scholar 

  33. Leisner C, Loeth N, Lamberth K et al (2008) One-pot, mix-and-read peptide-MHC tetramers. PLoS One 3:e1678. https://doi.org/10.1371/journal.pone.0001678

    Article  ADS  Google Scholar 

  34. Lang MJ, Asbury CL, Shaevitz JW, Block SM (2002) An automated two-dimensional optical force clamp for single molecule studies. Biophys J 83:491–501. https://doi.org/10.1016/S0006-3495(02)75185-0

    Article  Google Scholar 

  35. Sarda S, Pointu D, Pincet F, Henry N (2004) Specific recognition of macroscopic objects by the cell surface: evidence for a receptor density threshold revealed by micrometric particle binding characteristics. Biophys J 86:3291–3303. https://doi.org/10.1016/S0006-3495(04)74377-5

    Article  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge previous members of the Lang and Reinherz groups for developing and refining the protocols herein. Flow Cytometry experiments were performed in the VMC Flow Cytometry Shared Resource. The VMC Flow Cytometry Shared Resource is supported by the Vanderbilt Ingram Cancer Center (P30 CA68485) and the Vanderbilt Digestive Disease Research Center (DK058404). This work is supported by grants from the NIH (R01 AI136301 and P01 AI143565).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew J. Lang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Stephens, H.M. et al. (2022). Measuring αβ T-Cell Receptor-Mediated Mechanosensing Using Optical Tweezers Combined with Fluorescence Imaging. In: Gennerich, A. (eds) Optical Tweezers. Methods in Molecular Biology, vol 2478. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2229-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2229-2_26

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2228-5

  • Online ISBN: 978-1-0716-2229-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics