Skip to main content

Single-Molecule Studies on the Motion and Force Generation of the Kinesin-3 Motor KIF1A

  • Protocol
  • First Online:
Optical Tweezers

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2478))

Abstract

KIF1A is a neuron-specific member of the kinesin-3 family of microtubule (MT) plus-end-directed motor proteins. It powers the migration of nuclei in differentiating brain stem cells and the transport of synaptic precursors and dense core vesicles in axons. Its dysfunction causes severe neurodevelopmental and neurodegenerative diseases termed KIF1A-associated neurological disorders (KAND). KAND mutations span the entirety of the KIF1A protein sequence, of which the majority are located within the motor domain and are thus predicted to affect the motor’s motility and force-generating properties. Unfortunately, the molecular etiologies of KAND remain poorly understood, in part because KIF1A’s molecular mechanism remains unclear. Here, we describe detailed methods for how to express a tail-truncated dimeric KIF1A in E. coli cells and provide step-by-step protocols for performing single-molecule studies with total internal reflection fluorescence microscopy and optical tweezers assays, which, when combined with structure-function studies, help to decipher KIF1A’s molecular mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miki H, Setou M, Kaneshiro K, Hirokawa N (2001) All kinesin superfamily protein, KIF, genes in mouse and human. Proc Natl Acad Sci U S A 98:7004–7011

    Article  ADS  Google Scholar 

  2. Okada Y, Yamazaki H, Sekine-Aizawa Y, Hirokawa N (1995) The neuron-specific kinesin superfamily protein KIF1A is a unique monomeric motor for anterograde axonal transport of synaptic vesicle precursors. Cell 81:769–780

    Article  Google Scholar 

  3. Carabalona A, Hu DJ, Vallee RB (2016) KIF1A inhibition immortalizes brain stem cells but blocks BDNF-mediated neuronal migration. Nat Neurosci 19:253–262

    Article  Google Scholar 

  4. Tsai J-W, Lian W-N, Kemal S, Kriegstein AR, Vallee RB (2010) Kinesin 3 and cytoplasmic dynein mediate interkinetic nuclear migration in neural stem cells. Nat Neurosci 13:1463–1471

    Article  Google Scholar 

  5. Barkus RV, Klyachko O, Horiuchi D, Dickson BJ, Saxton WM (2008) Identification of an axonal kinesin-3 motor for fast anterograde vesicle transport that facilitates retrograde transport of neuropeptides. Mol Biol Cell 19:274–283

    Article  Google Scholar 

  6. Hall DH, Hedgecock EM (1991) Kinesin-related gene unc-104 is required for axonal transport of synaptic vesicles in C. elegans. Cell 65:837–847

    Article  Google Scholar 

  7. Lo KY, Kuzmin A, Unger SM, Petersen JD, Silverman MA (2011) KIF1A is the primary anterograde motor protein required for the axonal transport of dense-core vesicles in cultured hippocampal neurons. Neurosci Lett 491:168–173

    Article  Google Scholar 

  8. Yonekawa Y et al (1998) Defect in synaptic vesicle precursor transport and neuronal cell death in KIF1A motor protein-deficient mice. J Cell Biol 141:431–441

    Article  Google Scholar 

  9. Zahn TR et al (2004) Dense core vesicle dynamics in Caenorhabditis elegans neurons and the role of kinesin UNC-104. Traffic 5:544–559

    Article  Google Scholar 

  10. Boyle L et al (2021) Genotype and defects in microtubule-based motility correlate with clinical severity in KIF1A associated neurological disorder. Hum Genet Genomics Adv 2:100026

    Article  Google Scholar 

  11. Nicita F et al (2021) Heterozygous KIF1A variants underlie a wide spectrum of neurodevelopmental and neurodegenerative disorders. J Med Genet 58:475

    Article  Google Scholar 

  12. Gabrych DR, Lau VZ, Niwa S, Silverman MA (2019) Going too far is the same as falling short(dagger): kinesin-3 family members in hereditary spastic paraplegia. Front Cell Neurosci 13:419

    Article  Google Scholar 

  13. Guo Y et al (2020) A rare KIF1A missense mutation enhances synaptic function and increases seizure activity. Front Genet 11:61

    Article  ADS  Google Scholar 

  14. John A, Ng-Cordell E, Hanna N, Brkic D, Baker K (2021) The neurodevelopmental spectrum of synaptic vesicle cycling disorders. J Neurochem 157:208

    Article  Google Scholar 

  15. Van Beusichem AE et al (2020) Mobility characteristics of children with spastic paraplegia due to a mutation in the KIF1A gene. Neuropediatrics 51:146–153

    Article  Google Scholar 

  16. Riviere JB et al (2011) KIF1A, an axonal transporter of synaptic vesicles, is mutated in hereditary sensory and autonomic neuropathy type 2. Am J Hum Genet 89:219–230

    Article  Google Scholar 

  17. Erlich Y et al (2011) Exome sequencing and disease-network analysis of a single family implicate a mutation in KIF1A in hereditary spastic paraparesis. Genome Res 21:658–664

    Article  Google Scholar 

  18. Hamdan FF et al (2011) Excess of de novo deleterious mutations in genes associated with glutamatergic systems in nonsyndromic intellectual disability. Am J Hum Genet 88:306–316

    Article  Google Scholar 

  19. Klebe S et al (2012) KIF1A missense mutations in SPG30, an autosomal recessive spastic paraplegia: distinct phenotypes according to the nature of the mutations. Eur J Hum Genet 20:645–649

    Article  Google Scholar 

  20. Okamoto N et al (2014) KIF1A mutation in a patient with progressive neurodegeneration. J Hum Genet 59:639–641

    Article  Google Scholar 

  21. Jamuar SS, Walsh CA (2014) Somatic mutations in cerebral cortical malformations. N Engl J Med 371:2038

    Article  Google Scholar 

  22. Lee JR et al (2015) De novo mutations in the motor domain of KIF1A cause cognitive impairment, spastic paraparesis, axonal neuropathy, and cerebellar atrophy. Hum Mutat 36:69–78

    Article  Google Scholar 

  23. Esmaeeli Nieh S et al (2015) De novo mutations in KIF1A cause progressive encephalopathy and brain atrophy. Ann Clin Transl Neurol 2:623–635

    Article  Google Scholar 

  24. Ylikallio E et al (2015) Dominant transmission of de novo KIF1A motor domain variant underlying pure spastic paraplegia. Eur J Hum Genet 23:1427–1430

    Article  Google Scholar 

  25. Citterio A et al (2015) Variants in KIF1A gene in dominant and sporadic forms of hereditary spastic paraparesis. J Neurol 262:2684–2690

    Article  Google Scholar 

  26. Ohba C et al (2015) De novo KIF1A mutations cause intellectual deficit, cerebellar atrophy, lower limb spasticity and visual disturbance. J Hum Genet 60:739–742

    Article  Google Scholar 

  27. Megahed H et al (2016) Utility of whole exome sequencing for the early diagnosis of pediatric-onset cerebellar atrophy associated with developmental delay in an inbred population. Orphanet J Rare Dis 11:57

    Article  Google Scholar 

  28. Hotchkiss L et al (2016) Novel de novo mutations in KIF1A as a cause of hereditary spastic paraplegia with progressive central nervous system involvement. J Child Neurol 31:1114–1119

    Article  Google Scholar 

  29. Iqbal Z et al (2017) Targeted high throughput sequencing in hereditary ataxia and spastic paraplegia. PLoS One 12:e0174667

    Article  Google Scholar 

  30. Hasegawa A et al (2017) Co-existence of spastic paraplegia-30 with novel KIF1A mutation and spinocerebellar ataxia 31 with intronic expansion of BEAN and TK2 in a family. J Neurol Sci 372:128–130

    Article  Google Scholar 

  31. Krenn M et al (2017) Hereditary spastic paraplegia caused by compound heterozygous mutations outside the motor domain of the KIF1A gene. Eur J Neurol 24:741–747

    Article  Google Scholar 

  32. Cheon CK et al (2017) Autosomal dominant transmission of complicated hereditary spastic paraplegia due to a dominant negative mutation of KIF1A, SPG30 gene. Sci Rep 7:12527

    Article  ADS  Google Scholar 

  33. Roda RH, Schindler AB, Blackstone C (2017) Multigeneration family with dominant SPG30 hereditary spastic paraplegia. Ann Clin Transl Neurol 4:821–824

    Article  Google Scholar 

  34. Travaglini L et al (2018) The impact of next-generation sequencing on the diagnosis of pediatric-onset hereditary spastic paraplegias: new genotype-phenotype correlations for rare HSP-related genes. Neurogenetics 19:111–121

    Article  Google Scholar 

  35. Demily C et al (2018) Additive effect of variably penetrant 22q11.2 duplication and pathogenic mutations in autism Spectrum disorder: to which extent does the tree hide the forest? J Autism Dev Disord 48:2886–2889

    Article  Google Scholar 

  36. Dong F, Costigan DC, Howitt BE (2019) Targeted next-generation sequencing in the detection of mismatch repair deficiency in endometrial cancers. Mod Pathol 32:252–257

    Article  Google Scholar 

  37. Samanta D, Gokden M (2019) PEHO syndrome: KIF1A mutation and decreased activity of mitochondrial respiratory chain complex. J Clin Neurosci 61:298–301

    Article  Google Scholar 

  38. Tomaselli PJ et al (2017) A de novo dominant mutation in KIF1A associated with axonal neuropathy, spasticity and autism spectrum disorder. J Peripher Nerv Syst 22:460–463

    Article  Google Scholar 

  39. Yoshikawa K et al (2019) The novel de novo mutation of KIF1A gene as the cause for spastic paraplegia 30 in a Japanese case. eNeurologicalSci 14:34–37

    Article  Google Scholar 

  40. Volk A, Conboy E, Wical B, Patterson M, Kirmani S (2015) Whole-exome sequencing in the clinic: lessons from six consecutive cases from the clinician’s perspective. Mol Syndromol 6:23–31

    Article  Google Scholar 

  41. Sun M et al (2019) Targeted exome analysis identifies the genetic basis of disease in over 50% of patients with a wide range of ataxia-related phenotypes. Genet Med 21:195–206

    Article  Google Scholar 

  42. Muir AM et al (2019) Genetic heterogeneity in infantile spasms. Epilepsy Res 156:106181

    Article  Google Scholar 

  43. Kashimada A et al (2019) Genetic analysis of undiagnosed ataxia-telangiectasia-like disorders. Brain and Development 41:150–157

    Article  Google Scholar 

  44. Pennings M et al (2020) KIF1A variants are a frequent cause of autosomal dominant hereditary spastic paraplegia. Eur J Hum Genet 28:40–49

    Article  Google Scholar 

  45. Xiaojing W et al (2020) Generation of a human induced pluripotent stem cell line (SDUBMSi001-A) from a hereditary spastic paraplegia patient carrying kif1a c.773C>T missense mutation. Stem Cell Res 43:101727

    Article  Google Scholar 

  46. van de Warrenburg BP et al (2016) Clinical exome sequencing for cerebellar ataxia and spastic paraplegia uncovers novel gene-disease associations and unanticipated rare disorders. Eur J Hum Genet 24:1460–1466

    Article  Google Scholar 

  47. Raffa L et al (2017) Optic nerve hypoplasia in a patient with a de novo KIF1A heterozygous mutation. Can J Ophthalmol 52:e169–e171

    Article  Google Scholar 

  48. Hosokawa S, Kubo Y, Arakawa R, Takashima H, Saito K (2020) Analysis of spinal muscular atrophy-like patients by targeted resequencing. Brain and Development 42:148–156

    Article  Google Scholar 

  49. Spagnoli C, Rizzi S, Salerno GG, Frattini D, Fusco C (2019) Long-term follow-up until early adulthood in autosomal dominant, complex SPG30 with a novel KIF1A variant: a case report. Ital J Pediatr 45:155

    Article  Google Scholar 

  50. Kurihara M et al (2020) A novel de novo KIF1A mutation in a patient with autism, hyperactivity, epilepsy, sensory disturbance, and spastic paraplegia. Intern Med 59:839–842

    Article  Google Scholar 

  51. Nemani T et al (2020) KIF1A-related disorders in children: a wide spectrum of central and peripheral nervous system involvement. J Peripher Nerv Syst 25:117–124

    Article  Google Scholar 

  52. Langlois S et al (2016) De novo dominant variants affecting the motor domain of KIF1A are a cause of PEHO syndrome. Eur J Hum Genet 24:949–953

    Article  Google Scholar 

  53. Budaitis BG et al (2021) Pathogenic mutations in the kinesin-3 motor KIF1A diminish force generation and movement through allosteric mechanisms. J Cell Biol 220:e202004227

    Article  Google Scholar 

  54. Guedes-Dias P et al (2019) Kinesin-3 responds to local microtubule dynamics to target synaptic cargo delivery to the presynapse. Curr Biol 29:268–282 e8

    Article  Google Scholar 

  55. Chiba K et al (2019) Disease-associated mutations hyperactivate KIF1A motility and anterograde axonal transport of synaptic vesicle precursors. Proc Natl Acad Sci U S A 116:18429–18434

    Article  Google Scholar 

  56. Lam AJ et al (2021) A highly conserved 310 helix within the kinesin motor domain is critical for kinesin function and human health. Sci Adv 7:eabf1002

    Article  ADS  Google Scholar 

  57. Liu X, Rao L, Gennerich A (2020) The regulatory function of the AAA4 ATPase domain of cytoplasmic dynein. Nat Commun 11:5952

    Article  ADS  Google Scholar 

  58. Brenner S, Berger F, Rao L, Nicholas MP, Gennerich A (2020) Force production of human cytoplasmic dynein is limited by its processivity. Sci Adv 6:eaaz4295

    Article  ADS  Google Scholar 

  59. Rao L, Berger F, Nicholas MP, Gennerich A (2019) Molecular mechanism of cytoplasmic dynein tension sensing. Nat Commun 10:3332

    Article  ADS  Google Scholar 

  60. Rao L, Hulsemann M, Gennerich A (2018) Combining structure-function and single-molecule studies on cytoplasmic dynein. Methods Mol Biol 1665:53–89

    Article  Google Scholar 

  61. Rao L et al (2013) The yeast dynein Dyn2-Pac11 complex is a dynein dimerization/processivity factor: structural and single-molecule characterization. Mol Biol Cell 24:2362–2377

    Article  Google Scholar 

  62. Reck-Peterson SL, Vale RD, Gennerich A (2012) Motile properties of cytoplasmic dynein. In: Amos KHAL (ed) Handbook of dynein. Pan Stanford Publishing, Singapore, pp 145–172

    Google Scholar 

  63. Gennerich A, Reck-Peterson SL (2011) Probing the force generation and stepping behavior of cytoplasmic dynein. Methods Mol Biol 783:63–80

    Article  Google Scholar 

  64. Belyy V, Hendel NL, Chien A, Yildiz A (2014) Cytoplasmic dynein transports cargos via load-sharing between the heads. Nat Commun 5:5544

    Article  ADS  Google Scholar 

  65. Reck-Peterson SL et al (2006) Single-molecule analysis of dynein processivity and stepping behavior. Cell 126:335–348

    Article  Google Scholar 

  66. Yildiz A, Tomishige M, Vale RD, Selvin PR (2004) Kinesin walks hand-over-hand. Science 303:676–678

    Article  ADS  Google Scholar 

  67. Yildiz A et al (2003) Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300:2061–2065

    Article  ADS  Google Scholar 

  68. Htet ZM et al (2020) LIS1 promotes the formation of activated cytoplasmic dynein-1 complexes. Nat Cell Biol 22:518–525

    Article  Google Scholar 

  69. Woehlke G et al (1997) Microtubule interaction site of the kinesin motor. Cell 90:207–216

    Article  Google Scholar 

  70. Li M, Zheng W (2011) Probing the structural and energetic basis of kinesin-microtubule binding using computational alanine-scanning mutagenesis. Biochemistry 50:8645–8655

    Article  Google Scholar 

  71. Block SM, Goldstein LS, Schnapp BJ (1990) Bead movement by single kinesin molecules studied with optical tweezers. Nature 348:348–352

    Article  ADS  Google Scholar 

  72. Kuo SC, Sheetz MP (1993) Force of single kinesin molecules measured with optical tweezers. Science 260:232–234

    Article  ADS  Google Scholar 

  73. Svoboda K, Schmidt CF, Schnapp BJ, Block SM (1993) Direct observation of kinesin stepping by optical trapping interferometry. Nature 365:721–727

    Article  ADS  Google Scholar 

  74. Dunn AR, Chuan P, Bryant Z, Spudich JA (2010) Contribution of the myosin VI tail domain to processive stepping and intramolecular tension sensing. Proc Natl Acad Sci U S A 107:7746–7750

    Article  ADS  Google Scholar 

  75. Rief M et al (2000) Myosin-V stepping kinetics: a molecular model for processivity. Proc Natl Acad Sci U S A 97:9482–9486

    Article  ADS  Google Scholar 

  76. Carter NJ, Cross RA (2005) Mechanics of the kinesin step. Nature 435:308–312

    Article  ADS  Google Scholar 

  77. Hirst WG, Kiefer C, Abdosamadi MK, Schaffer E, Reber S (2020) In vitro reconstitution and imaging of microtubule dynamics by fluorescence and label-free microscopy. STAR Protoc 1:100177

    Article  Google Scholar 

  78. Mahamdeh M, Simmert S, Luchniak A, Schaffer E, Howard J (2018) Label-free high-speed wide-field imaging of single microtubules using interference reflection microscopy. J Microsc 272:60–66

    Article  Google Scholar 

  79. Simmert S, Abdosamadi MK, Hermsdorf G, Schaffer E (2018) LED-based interference-reflection microscopy combined with optical tweezers for quantitative three-dimensional microtubule imaging. Opt Express 26:14499–14513

    Article  ADS  Google Scholar 

  80. Gronemeyer T, Chidley C, Juillerat A, Heinis C, Johnsson K (2006) Directed evolution of O6-alkylguanine-DNA alkyltransferase for applications in protein labeling. Protein Eng Des Sel 19:309–316

    Article  Google Scholar 

  81. Nicholas MP et al (2015) Control of cytoplasmic dynein force production and processivity by its C-terminal domain. Nat Commun 6:6206

    Article  ADS  Google Scholar 

  82. Nicholas MP et al (2015) Cytoplasmic dynein regulates its attachment to microtubules via nucleotide state-switched mechanosensing at multiple AAA domains. Proc Natl Acad Sci U S A 112:6371–6376

    Article  ADS  Google Scholar 

Download references

Acknowledgments

L. Rao and A. Gennerich are supported by National Institutes of Health grants R01GM098469 and R01NS114636.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lu Rao or Arne Gennerich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rao, L., Gennerich, A. (2022). Single-Molecule Studies on the Motion and Force Generation of the Kinesin-3 Motor KIF1A. In: Gennerich, A. (eds) Optical Tweezers. Methods in Molecular Biology, vol 2478. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2229-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2229-2_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2228-5

  • Online ISBN: 978-1-0716-2229-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics