Skip to main content

CRISPR/Cas9 On- and Off-Target Activity Using Correlative Force and Fluorescence Single-Molecule Microscopy

  • Protocol
  • First Online:
Optical Tweezers

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2478))

Abstract

The discovery of CRISPR/Cas9 as an easily programmable endonuclease heralds a new era of genetic manipulation. With this comes the prospect of novel gene therapy approaches, and the potential to cure previously untreatable genetic diseases. However, reports of spurious off-target editing by CRISPR/Cas9 pose a significant hurdle to realizing this potential. A deeper understanding of the factors that affect Cas9 specificity is vital for development of safe and efficient therapeutics. Here, we describe methods for the use of optical tweezers combined with confocal fluorescence microscopy and microfluidics for the analysis of on- and off-target activity of Cas9 activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jinek M et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  ADS  Google Scholar 

  2. Cong L et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  ADS  Google Scholar 

  3. Mali P et al (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Article  ADS  Google Scholar 

  4. Le Rhun A, Escalera-Maurer A, Bratovič M, Charpentier E (2019) CRISPR-Cas in Streptococcus pyogenes. RNA Biol 16:380–389

    Article  Google Scholar 

  5. Jiang F, Zhou K, Ma L, Gressel S, Doudna JA (2015) A Cas9-guide RNA complex preorganized for target DNA recognition. Science 348:1477–1481

    Article  ADS  Google Scholar 

  6. Jinek M et al (2014) Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343:1247997–1247997

    Article  Google Scholar 

  7. Anders C, Niewoehner O, Duerst A, Jinek M (2014) Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513:569–573

    Article  ADS  Google Scholar 

  8. Ran FA et al (2015) In vivo genome editing using Staphylococcus aureus Cas9. Nature 520:186–191

    Article  ADS  Google Scholar 

  9. Ding Q et al (2013) Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell 12:393–394

    Article  Google Scholar 

  10. Liang P et al (2015) CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 6:363–372

    Article  Google Scholar 

  11. Kim S, Kim D, Cho SW, Kim J-S, Kim J-S (2014) Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 24:1012–1019

    Article  Google Scholar 

  12. Wang H et al (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153:910–918

    Article  Google Scholar 

  13. Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32:347–355

    Article  Google Scholar 

  14. Raveux A, Vandormael-Pournin S, Cohen-Tannoudji M (2017) Optimization of the production of knock-in alleles by CRISPR/Cas9 microinjection into the mouse zygote. Sci Rep 7:42661

    Article  ADS  Google Scholar 

  15. Tang L et al (2017) CRISPR/Cas9-mediated gene editing in human zygotes using Cas9 protein. Mol Gen Genomics 292:525–533

    Article  Google Scholar 

  16. Fogarty NME et al (2017) Genome editing reveals a role for OCT4 in human embryogenesis. Nature 550:67–73

    Article  ADS  Google Scholar 

  17. Doudna JA (2020) The promise and challenge of therapeutic genome editing. Nature 578:229–236

    Article  ADS  Google Scholar 

  18. Lin Y et al (2014) CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences. Nucleic Acids Res 42:7473–7485

    Article  Google Scholar 

  19. Hsu PD et al (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31:827–832

    Article  Google Scholar 

  20. Pattanayak V et al (2013) High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol 31:839–843

    Article  Google Scholar 

  21. Fu Y et al (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31:822–826

    Article  Google Scholar 

  22. Frock RL et al (2015) Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nat Biotechnol 33:179–188

    Article  Google Scholar 

  23. Tsai SQ et al (2015) GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol 33:187–197

    Article  Google Scholar 

  24. Wienert B et al (2019) Unbiased detection of CRISPR off-targets in vivo using DISCOVER-Seq. Science 364:286–289

    Article  ADS  Google Scholar 

  25. Kim D et al (2015) Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat Methods 12:237–243

    Article  Google Scholar 

  26. Cameron P et al (2017) Mapping the genomic landscape of CRISPR–Cas9 cleavage. Nat Methods 14:600–606

    Article  Google Scholar 

  27. Tsai SQ et al (2017) CIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPR–Cas9 nuclease off-targets. Nat Methods 14:607–614

    Article  Google Scholar 

  28. Crosetto N et al (2013) Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing. Nat Methods 10:361–365

    Article  Google Scholar 

  29. Yan WX et al (2017) BLISS is a versatile and quantitative method for genome-wide profiling of DNA double-strand breaks. Nat Commun 8:15058

    Article  ADS  Google Scholar 

  30. Akcakaya P et al (2018) In vivo CRISPR editing with no detectable genome-wide off-target mutations. Nature 561:416–419

    Article  ADS  Google Scholar 

  31. Stemmer M, Thumberger T, del Sol Keyer M, Wittbrodt J, Mateo JL (2015) CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS One 10:e0124633

    Article  Google Scholar 

  32. Xiao A et al (2014) CasOT: a genome-wide Cas9/gRNA off-target searching tool. Bioinformatics 30:1180–1182

    Article  Google Scholar 

  33. Bae S, Park J, Kim J-S (2014) Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30:1473–1475

    Article  Google Scholar 

  34. Haeussler M et al (2016) Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol 17:148

    Article  Google Scholar 

  35. Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK (2014) Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 32:279–284

    Article  Google Scholar 

  36. Rueda FO et al (2017) Mapping the sugar dependency for rational generation of a DNA-RNA hybrid-guided Cas9 endonuclease. Nat Commun 8:1610

    Article  ADS  Google Scholar 

  37. Yin H et al (2018) Partial DNA-guided Cas9 enables genome editing with reduced off-target activity. Nat Chem Biol 14:311–316

    Article  Google Scholar 

  38. Kartje ZJ, Barkau CL, Rohilla KJ, Ageely EA, Gagnon KT (2018) Chimeric guides probe and enhance Cas9 biochemical activity. Biochemistry 57:3027–3031

    Article  Google Scholar 

  39. Kim HY et al (2019) Chimeric crRNAs with 19 DNA residues in the guide region show the retained DNA cleavage activity of Cas9 with potential to improve the specificity. Chem Commun 55:3552–3555

    Article  Google Scholar 

  40. Ryan DE et al (2018) Improving CRISPR-Cas specificity with chemical modifications in single-guide RNAs. Nucleic Acids Res 46:792–803

    Article  Google Scholar 

  41. Rahdar M et al (2015) Synthetic CRISPR RNA-Cas9–guided genome editing in human cells. Proc Natl Acad Sci U S A 112:E7110–E7117

    Article  Google Scholar 

  42. Cromwell CR et al (2018) Incorporation of bridged nucleic acids into CRISPR RNAs improves Cas9 endonuclease specificity. Nat Commun 9:1448

    Article  ADS  Google Scholar 

  43. Kocak DD et al (2019) Increasing the specificity of CRISPR systems with engineered RNA secondary structures. Nat Biotechnol 37:657–666

    Article  Google Scholar 

  44. Slaymaker IM et al (2016) Rationally engineered Cas9 nucleases with improved specificity. Science 351:84–88

    Article  ADS  Google Scholar 

  45. Kleinstiver BP et al (2016) High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529:490–495

    Article  ADS  Google Scholar 

  46. Vakulskas CA et al (2018) A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells. Nat Med 24:1216–1224

    Article  Google Scholar 

  47. Casini A et al (2018) A highly specific SpCas9 variant is identified by in vivo screening in yeast. Nat Biotechnol 36:265–271

    Article  Google Scholar 

  48. Lee JK et al (2018) Directed evolution of CRISPR-Cas9 to increase its specificity. Nat Commun 9:3048

    Article  ADS  Google Scholar 

  49. Hu JH et al (2018) Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556:57–63

    Article  ADS  Google Scholar 

  50. Nishimasu H et al (2014) Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156:935–949

    Article  Google Scholar 

  51. Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA (2014) DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507:62–67

    Article  ADS  Google Scholar 

  52. Singh D, Sternberg SH, Fei J, Doudna JA, Ha T (2016) Real-time observation of DNA recognition and rejection by the RNA-guided endonuclease Cas9. Nat Commun 7:12778

    Article  ADS  Google Scholar 

  53. Szczelkun MD et al (2014) Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes. Proc Natl Acad Sci U S A 111:9798–9803

    Article  ADS  Google Scholar 

  54. Rutkauskas M et al (2015) Directional R-loop formation by the CRISPR-cas surveillance complex cascade provides efficient off-target site rejection. Cell Rep 10:1534–1543

    Article  Google Scholar 

  55. Lim Y et al (2016) Structural roles of guide RNAs in the nuclease activity of Cas9 endonuclease. Nat Commun 7:13350

    Article  ADS  Google Scholar 

  56. Sternberg SH, Lafrance B, Kaplan M, Doudna JA (2015) Conformational control of DNA target cleavage by CRISPR-Cas9. Nature 527:110–113

    Article  ADS  Google Scholar 

  57. Osuka S et al (2018) Real-time observation of flexible domain movements in CRISPR–Cas9. EMBO J 37:e96941

    Article  Google Scholar 

  58. Dagdas YS, Chen JS, Sternberg SH, Doudna JA, Yildiz A (2017) A conformational checkpoint between DNA binding and cleavage by CRISPR-Cas9. Sci Adv 3:eaao0027

    Article  Google Scholar 

  59. Chen JS et al (2017) Enhanced proofreading governs CRISPR–Cas9 targeting accuracy. Nature 550:407–410

    Article  ADS  Google Scholar 

  60. Singh D et al (2018) Mechanisms of improved specificity of engineered Cas9s revealed by single-molecule FRET analysis. Nat Struct Mol Biol 25:347–354

    Article  Google Scholar 

  61. Okafor IC et al (2019) Single molecule analysis of effects of non-canonical guide RNAs and specificity-enhancing mutations on Cas9-induced DNA unwinding. Nucleic Acids Res 47:11880–11888

    Google Scholar 

  62. Klein M, Eslami-Mossallam B, Arroyo DG, Depken M (2018) Hybridization kinetics explains CRISPR-Cas off-targeting rules. Cell Rep 22:1413–1423

    Article  Google Scholar 

  63. Eslami-Mossallam B et al (2022) A kinetic model predicts SpCas9 activity, improves off-target classification, and reveals the physical basis of targeting fidelity. Nat Commun 13, 1367

    Google Scholar 

  64. Newton MD et al (2019) DNA stretching induces Cas9 off-target activity. Nat Struct Mol Biol 26:185–192

    Article  Google Scholar 

  65. Rueda D, Walter NG (2006) Fluorescent energy transfer readout of an Aptazyme-based biosensor. Methods Mol Biol 335:289–310

    Google Scholar 

  66. Hardin JW, Warnasooriya C, Kondo Y, Nagai K, Rueda D (2015) Assembly and dynamics of the U4/U6 di-snRNP by single-molecule FRET. Nucleic Acids Res 43:10963–10974

    Article  Google Scholar 

  67. Gross P, Farge G, Peterman EJG, Wuite GJL (2010) Combining optical tweezers, single-molecule fluorescence microscopy, and microfluidics for studies of DNA-protein interactions. Methods Enzymol 475:427–453

    Article  Google Scholar 

  68. Rasnik I, McKinney SA, Ha T (2006) Nonblinking and long-lasting single-molecule fluorescence imaging. Nat Methods 3:891–893

    Article  Google Scholar 

  69. Aitken CE, Marshall RA, Puglisi JD (2008) An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments. Biophys J 94:1826–1835

    Article  Google Scholar 

  70. Senavirathne G et al (2015) Activation-induced deoxycytidine deaminase (AID) co-transcriptional scanning at single-molecule resolution. Nat Commun 6:10209

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We would like to thank members of the Rueda Lab, for useful suggestions and discussions, as well as members of the AstraZeneca Discovery Sciences team for providing purified spCas9 and dCas9 protein. We also thank LUMICKS and its Applications Scientists for assistance troubleshooting the C-Trap. The Rueda lab is funded by a core grant of the MRC-London Institute of Medical Sciences (UKRI MC-A658-5TY10), a Wellcome Trust collaborative grant (206292/C/17/Z), and a BBSRC Case Studentship (to MDN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Rueda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Newton, M.D., Taylor, B.J., Cuomo, M.E., Rueda, D.S. (2022). CRISPR/Cas9 On- and Off-Target Activity Using Correlative Force and Fluorescence Single-Molecule Microscopy. In: Gennerich, A. (eds) Optical Tweezers. Methods in Molecular Biology, vol 2478. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2229-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2229-2_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2228-5

  • Online ISBN: 978-1-0716-2229-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics