Skip to main content

Production of Functional Plant Legumain Proteases Using the Leishmania tarentolae Expression System

  • Protocol
  • First Online:
Plant Proteases and Plant Cell Death

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2447))

Abstract

Plant proteases of the legumain-type are key players in many processes along the plant life cycle. In particular, legumains are especially important in plant programmed cell death and the processing and maturation of seed storage proteins within the vacuole. Plant legumains are therefore synonymously called vacuolar processing enzymes (VPEs). Because of their dual protease and cyclase activities, plant legumains are of great interest to biotechnological applications, e.g., for the development of cyclic peptides for drug design. Despite this high interest by the scientific community, the recombinant expression of plant legumains proved challenging due to several posttranslational modifications, including (1) the formation of structurally critical disulfide bonds, (2) activation via pH-dependent proteolytic processing, and (3) stabilization by varying degrees of glycosylation. Recently we could show that LEXSY is a robust expression system for the production of plant legumains. Here we provide a general protocol for the recombinant expression of plant legumains in Leishmania cells. We further included detailed procedures for legumain purification, activation and subsequent activity assays and additionally note specific considerations with regard to isoform specific activation intermediates. This protocol serves as a universal strategy for different legumain isoforms from different source organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Martinez M, Gomez-Cabellos S, Gimenez MJ, Barro F, Diaz I, Diaz-Mendoza M (2019) Plant proteases: from key enzymes in germination to allies for fighting human gluten-related disorders. Front Plant Sci 10:721

    Article  Google Scholar 

  2. Vorster BJ, Cullis CA, Kunert KJ (2019) Plant vacuolar processing enzymes. Front Plant Sci 10:479

    Article  Google Scholar 

  3. Julian I, Gandullo J, Santos-Silva LK, Diaz I, Martinez M (2013) Phylogenetically distant barley legumains have a role in both seed and vegetative tissues. J Exp Bot 64(10):2929–2941

    Article  CAS  Google Scholar 

  4. Muntz K, Shutov AD (2002) Legumains and their functions in plants. Trends Plant Sci 7(8):340–344

    Article  CAS  Google Scholar 

  5. Nakaune S, Yamada K, Kondo M, Kato T, Tabata S, Nishimura M et al (2005) A vacuolar processing enzyme, deltaVPE, is involved in seed coat formation at the early stage of seed development. Plant Cell 17(3):876–887

    Article  CAS  Google Scholar 

  6. Yamada K, Basak AK, Goto-Yamada S, Tarnawska-Glatt K, Hara-Nishimura I (2020) Vacuolar processing enzymes in the plant life cycle. New Phytol 226(1):21–31

    Article  CAS  Google Scholar 

  7. Shimada T, Yamada K, Kataoka M, Nakaune S, Koumoto Y, Kuroyanagi M et al (2003) Vacuolar processing enzymes are essential for proper processing of seed storage proteins in Arabidopsis thaliana. J Biol Chem 278(34):32292–32299

    Article  CAS  Google Scholar 

  8. Hara-Nishimura I, Takeuchi Y, Nishimura M (1993) Molecular characterization of a vacuolar processing enzyme related to a putative cysteine proteinase of Schistosoma mansoni. Plant Cell 5(11):1651–1659

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Becker C, Shutov AD, Nong VH, Senyuk VI, Jung R, Horstmann C et al (1995) Purification, cDNA cloning and characterization of proteinase B, an asparagine-specific endopeptidase from germinating vetch (Vicia sativa L.) seeds. Eur J Biochem 228(2):456–462

    Article  CAS  Google Scholar 

  10. Abe Y, Shirane K, Yokosawa H, Matsushita H, Mitta M, Kato I et al (1993) Asparaginyl endopeptidase of jack bean seeds. Purification, characterization, and high utility in protein sequence analysis. J Biol Chem 268(5):3525–3529

    Article  CAS  Google Scholar 

  11. Dall E, Zauner FB, Soh WT, Demir F, Dahms SO, Cabrele C et al (2020) Structural and functional studies of Arabidopsis thaliana legumain beta reveal isoform specific mechanisms of activation and substrate recognition. J Biol Chem 295(37):13047–13064

    Article  CAS  Google Scholar 

  12. Zauner FB, Dall E, Regl C, Grassi L, Huber CG, Cabrele C et al (2018) Crystal structure of plant Legumain reveals a unique two-chain state with pH-dependent activity regulation. Plant Cell 30(3):686–699

    Article  CAS  Google Scholar 

  13. Yang R, Wong YH, Nguyen GKT, Tam JP, Lescar J, Wu B (2017) Engineering a catalytically efficient recombinant protein ligase. J Am Chem Soc 139(15):5351–5358

    Article  CAS  Google Scholar 

  14. Hemu X, El Sahili A, Hu S, Wong K, Chen Y, Wong YH et al (2019) Structural determinants for peptide-bond formation by asparaginyl ligases. Proc Natl Acad Sci U S A 116(24):11737–11746

    Article  CAS  Google Scholar 

  15. Bernath-Levin K, Nelson C, Elliott AG, Jayasena AS, Millar AH, Craik DJ et al (2015) Peptide macrocyclization by a bifunctional endoprotease. Chem Biol 22(5):571–582

    Article  CAS  Google Scholar 

  16. Conlan BF, Gillon AD, Craik DJ, Anderson MA (2010) Circular proteins and mechanisms of cyclization. Biopolymers 94(5):573–583

    Article  CAS  Google Scholar 

  17. Craik DJ, Malik U (2013) Cyclotide biosynthesis. Curr Opin Chem Biol 17(4):546–554

    Article  CAS  Google Scholar 

  18. Nguyen GK, Wang S, Qiu Y, Hemu X, Lian Y, Tam JP (2014) Butelase 1 is an Asx-specific ligase enabling peptide macrocyclization and synthesis. Nat Chem Biol 10(9):732–738

    Article  CAS  Google Scholar 

  19. Harris KS, Durek T, Kaas Q, Poth AG, Gilding EK, Conlan BF et al (2015) Efficient backbone cyclization of linear peptides by a recombinant asparaginyl endopeptidase. Nat Commun 6:10199

    Article  CAS  Google Scholar 

  20. Saska I, Gillon AD, Hatsugai N, Dietzgen RG, Hara-Nishimura I, Anderson MA et al (2007) An asparaginyl endopeptidase mediates in vivo protein backbone cyclization. J Biol Chem 282(40):29721–29728

    Article  CAS  Google Scholar 

  21. Craik DJ (2012) Host-defense activities of cyclotides. Toxins (Basel) 4(2):139–156

    Article  CAS  Google Scholar 

  22. Mylne JS, Colgrave ML, Daly NL, Chanson AH, Elliott AG, McCallum EJ et al (2011) Albumins and their processing machinery are hijacked for cyclic peptides in sunflower. Nat Chem Biol 7(5):257–259

    Article  CAS  Google Scholar 

  23. Gillon AD, Saska I, Jennings CV, Guarino RF, Craik DJ, Anderson MA (2008) Biosynthesis of circular proteins in plants. Plant J 53(3):505–515

    Article  CAS  Google Scholar 

  24. Wenyon CM (1920) Observations on the intestinal protozoa of three Egyptian lizards, with a note on a cell-invading fungus. Parasitology 12:350

    Article  Google Scholar 

  25. Breitling R, Klingner S, Callewaert N, Pietrucha R, Geyer A, Ehrlich G et al (2002) Non-pathogenic trypanosomatid protozoa as a platform for protein research and production. Protein Expr Purif 25(2):209–218

    Article  CAS  Google Scholar 

  26. Kushnir S, Gase K, Breitling R, Alexandrov K (2005) Development of an inducible protein expression system based on the protozoan host Leishmania tarentolae. Protein Expr Purif 42(1):37–46

    Article  CAS  Google Scholar 

  27. Fritsche C, Sitz M, Wolf M, Pohl HD (2008) Development of a defined medium for heterologous expression in Leishmania tarentolae. J Basic Microbiol 48(6):488–495

    Article  CAS  Google Scholar 

  28. Zauner FB, Elsasser B, Dall E, Cabrele C, Brandstetter H (2018) Structural analyses of Arabidopsis thaliana legumain gamma reveal differential recognition and processing of proteolysis and ligation substrates. J Biol Chem 293(23):8934–8946

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from the Austrian Science Fund (FWF, project numbers W_01213 and P31867).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elfriede Dall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dall, E., Licht, A., Brandstetter, H. (2022). Production of Functional Plant Legumain Proteases Using the Leishmania tarentolae Expression System. In: Klemenčič, M., Stael, S., Huesgen, P.F. (eds) Plant Proteases and Plant Cell Death. Methods in Molecular Biology, vol 2447. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2079-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2079-3_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2078-6

  • Online ISBN: 978-1-0716-2079-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics