Skip to main content

Sensitive Plant N-Terminome Profiling with HUNTER

  • Protocol
  • First Online:
Book cover Plant Proteases and Plant Cell Death

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2447))

Abstract

Protein N-termini provide unique and distinguishing information on proteolytically processed or N-terminally modified proteoforms. Also splicing, use of alternative translation initiation sites, and a variety of co- and post-translational N-terminal modifications generate distinct proteoforms that are unambiguously identified by their N-termini. However, N-terminal peptides are only a small fraction among all peptides generated in a shotgun proteome digest, are often of low stoichiometric abundance, and therefore require enrichment. Various protocols for enrichment of N-terminal peptides have been established and successfully been used for protease substrate discovery and profiling of N-terminal modification, but often require large amounts of proteome. We have recently established the High-efficiency Undecanal-based N-Termini EnRichment (HUNTER) as a fast and sensitive method to enable enrichment of protein N-termini from limited sample sources with as little as a few microgram proteome. Here we present our current HUNTER protocol for sensitive plant N-terminome profiling, including sample preparation, enrichment of N-terminal peptides, and mass spectrometry data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Perrar A, Dissmeyer N, Huesgen PF (2019) New beginnings and new ends: methods for large-scale characterization of protein termini and their use in plant biology. J Exp Bot 70:2021–2038. https://doi.org/10.1093/jxb/erz104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Giglione C, Fieulaine S, Meinnel T (2015) N-terminal protein modifications: bringing back into play the ribosome. Biochimie 114:134–146. https://doi.org/10.1016/j.biochi.2014.11.008

    Article  CAS  PubMed  Google Scholar 

  3. Giglione C, Meinnel T (2021) Evolution-driven versatility of N terminal acetylation in photoautotrophs. Trends Plant Sci 26:375–391. https://doi.org/10.1016/j.tplants.2020.11.012

    Article  CAS  PubMed  Google Scholar 

  4. Meinnel T, Dian C, Giglione C (2020) Myristoylation, an ancient protein modification mirroring Eukaryogenesis and evolution. Trends Biochem Sci 45:619–632. https://doi.org/10.1016/j.tibs.2020.03.007

    Article  CAS  PubMed  Google Scholar 

  5. Huesgen PF, Alami M, Lange PF et al (2013) Proteomic amino-termini profiling reveals targeting information for protein import into complex plastids. PLoS One 8:1–12. https://doi.org/10.1371/journal.pone.0074483

    Article  CAS  Google Scholar 

  6. Rowland E, Kim J, Bhuiyan NH, van Wijk KJ (2015) The Arabidopsis chloroplast stromal N-Terminome: complexities of amino-terminal protein maturation and stability. Plant Physiol 169:1881–1896. https://doi.org/10.1104/pp.15.01214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Köhler D, Dobritzsch D, Hoehenwarter W et al (2015) Identification of protein N-termini in Cyanophora paradoxa cyanelles: transit peptide composition and sequence determinants for precursor maturation. Front Plant Sci 6:559. https://doi.org/10.3389/fpls.2015.00559

    Article  PubMed  PubMed Central  Google Scholar 

  8. Venne AS, Solari FA, Faden F et al (2015) An improved workflow for quantitative N-terminal charge-based fractional diagonal chromatography (ChaFRADIC) to study proteolytic events in Arabidopsis thaliana. Proteomics 15:2458–2469. https://doi.org/10.1002/pmic.201500014

    Article  CAS  PubMed  Google Scholar 

  9. Zhang H, Deery MJ, Gannon L et al (2015) Quantitative proteomics analysis of the Arg/N-end rule pathway of targeted degradation in Arabidopsis roots. Proteomics 15(14):2447–2457. https://doi.org/10.1002/pmic.201400530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fortelny N, Yang S, Pavlidis P et al (2015) Proteome TopFIND 3.0 with TopFINDer and PathFINDer: database and analysis tools for the association of protein termini to pre- and post-translational events. Nucleic Acids Res 43:D290–D297. https://doi.org/10.1093/nar/gku1012

    Article  CAS  PubMed  Google Scholar 

  11. Dall E, Zauner FB, Soh WT et al (2020) Structural and functional studies of Arabidopsis thaliana legumain beta reveal isoform specific mechanisms of activation and substrate recognition. J Biol Chem 295:13047–13064. https://doi.org/10.1074/jbc.ra120.014478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tsiatsiani L, Timmerman E, De Bock PJ et al (2013) The Arabidopsis METACASPASE9 Degradome. Plant Cell 25:2831–2847. https://doi.org/10.1105/tpc.113.115287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Demir F, Niedermaier S, Villamor JG, Huesgen PF (2017) Quantitative proteomics in plant protease substrate identification. New Phytol 218(3):936–943. https://doi.org/10.1111/nph.14587

    Article  PubMed  Google Scholar 

  14. Cox J, Mann M (2011) Quantitative, high-resolution proteomics for data-driven systems biology. Annu Rev Biochem 80:273–299. https://doi.org/10.1146/annurev-biochem-061308-093216

    Article  CAS  PubMed  Google Scholar 

  15. Niedermaier S, Huesgen PF (2019) Positional proteomics for identification of secreted proteoforms released by site-specific processing of membrane proteins. Biochim Biophys Acta 1867:140138. https://doi.org/10.1016/j.bbapap.2018.09.004

    Article  CAS  Google Scholar 

  16. Weng SSH, Demir F, Ergin EK et al (2019) Sensitive determination of proteolytic proteoforms in limited microscale proteome samples. Mol Cell Proteomics 18:2335–2347. https://doi.org/10.1101/566109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tyanova S, Temu T, Cox J (2016) The MaxQuant computational platform for mass spectrometry—based shotgun proteomics. Nat Protoc 11:2301–2319. https://doi.org/10.1038/nprot.2016.136

    Article  CAS  PubMed  Google Scholar 

  18. Röst HL, Sachsenberg T, Aiche S et al (2016) OpenMS: a flexible open-source software platform for mass spectrometry data analysis. Nat Methods 13:741–748. https://doi.org/10.1038/nmeth.3959

    Article  CAS  PubMed  Google Scholar 

  19. Deutsch EW, Mendoza L, Shteynberg D et al (2015) Trans-proteomic pipeline, a standardized data processing pipeline for large-scale reproducible proteomics informatics. Proteomics Clin Appl 9:745–754. https://doi.org/10.1002/prca.201400164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Huesgen PF, Lange PF, Rogers LD et al (2014) LysargiNase mirrors trypsin for protein C-terminal and methylation-site identification. Nat Methods 12:55–58. https://doi.org/10.1038/nmeth.3177

    Article  CAS  PubMed  Google Scholar 

  21. Soh WT, Demir F, Dall E et al (2020) ExteNDing proteome coverage with legumain as highly specific digestion protease. Anal Chem 92:2961–2971. https://doi.org/10.1021/acs.analchem.9b03604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Giansanti P, Tsiatsiani L, Low TY, Heck AJR (2016) Six alternative proteases for mass spectrometry-based proteomics beyond trypsin. Nat Protocols 11:993–1006. https://doi.org/10.1038/nprot.2016.057

    Article  CAS  PubMed  Google Scholar 

  23. Han DK, Eng J, Zhou H, Aebersold R (2001) Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry. Nat Biotechnol 19:946–951. https://doi.org/10.1038/nbt1001-946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nilse L, Sigloch FC, Biniossek ML, Schilling O (2015) Toward improved peptide feature detection in quantitative proteomics using stable isotope labeling. Proteomics Clin Appl 9:706–714. https://doi.org/10.1002/prca.201400173

    Article  CAS  PubMed  Google Scholar 

  25. Bateman A, Martin MJ, O’Donovan C et al (2017) UniProt: the universal protein knowledgebase. Nucleic Acids Res 45:D158–D169. https://doi.org/10.1093/nar/gkw1099

    Article  CAS  Google Scholar 

  26. Meyer B, Chiaravalli J, Gellenoncourt S, et al (2020) Characterisation of protease activity during SARS-CoV-2 infection identifies novel viral cleavage sites and cellular targets for drug repurposing. Microbiology

    Google Scholar 

  27. Demir F, Niedermaier S, Kizhakkedathu JN, Huesgen PF (2017) Profiling of protein N-termini and their modifications in complex samples. In: Schilling O (ed) Methods in molecular biology, pp 35–50

    Google Scholar 

  28. Lange PF, Huesgen PF, Nguyen K, Overall CM (2014) Annotating N termini for the human proteome project: N termini and Na-acetylation status differentiate stable cleaved protein species from degradation remnants in the human erythrocyte proteome. J Proteome Res 13:2028–2044. https://doi.org/10.1021/pr401191w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang Y, Fonslow BR, Shan B et al (2013) Protein analysis by shotgun/bottom-up proteomics. Chem Rev 113:2343–2394. https://doi.org/10.1021/cr3003533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. auf dem Keller U, Prudova A, Gioia M et al (2010) A statistics-based platform for quantitative N-terminome analysis and identification of protease cleavage products. Mol Cell Proteomics 9:912–927. https://doi.org/10.1074/mcp.M000032-MCP201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Demir F, Kizhakkedathu JN, Rinschen MM, Huesgen PF (2021) MANTI: automated annotation of protein N-termini for rapid interpretation of N-Terminome data sets. Anal Chem 93:5596–5605. https://doi.org/10.1021/acs.analchem.1c00310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was in part supported by funding from the Deutsche Forschungsgemeinschaft DFG (project SFB-1403–414786233).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pitter F. Huesgen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Demir, F., Perrar, A., Mantz, M., Huesgen, P.F. (2022). Sensitive Plant N-Terminome Profiling with HUNTER . In: Klemenčič, M., Stael, S., Huesgen, P.F. (eds) Plant Proteases and Plant Cell Death. Methods in Molecular Biology, vol 2447. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2079-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2079-3_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2078-6

  • Online ISBN: 978-1-0716-2079-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics