Skip to main content

Mechanism of Mucin Recognition by Lectins: A Thermodynamic Study

  • Protocol
  • First Online:
Galectins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2442))

Abstract

Isothermal titration microcalorimetry (ITC) can directly determine the thermodynamic binding parameters of biological molecules including affinity constant, binding stoichiometry, heat of binding (enthalpy) and indirectly the entropy, and free energy of binding. ITC has been extensively used to study the binding of lectins to mono- and oligosaccharides, but limitedly in applications to lectin–glycoprotein interactions. Inherent experimental challenges to ITC include sample precipitation during the experiment and relative high amount of sample required, but careful design of experiments can minimize these problems and allow valuable information to be obtained. For example, the thermodynamics of binding of lectins to multivalent globular and linear glycoproteins (mucins) have been described. The results are consistent with a dynamic binding mechanism in which lectins bind and jump from carbohydrate to carbohydrate epitope in these molecules leading to increased affinity. Importantly, the mechanism of binding of lectins to mucins appears similar to that for a variety of protein ligands binding to DNA. Recent results also show that high-affinity lectin–mucin cross-linking interactions are driven by favorable entropy of binding that is associated with the bind and jump mechanism. The results suggest that the binding of ligands to biopolymers, in general, may involve a common mechanism that involves enhanced entropic effects that facilitate binding interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Drickamer K, Taylor ME (1993) Biology of animal lectins. Annu Rev Cell Biol 9:237–264

    Article  CAS  PubMed  Google Scholar 

  2. Liu FT (2000) Galectins: a new family of regulators of inflammation. Clin Immunol 97:79–88

    Article  CAS  PubMed  Google Scholar 

  3. Konstantinov KN, Robbins BA, Liu FT (1996) Galectin-3, a β-galactoside-binding animal lectin, is a marker of anaplastic large-cell lymphoma. Am J Pathol 148:25–30

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Akahani S, Makker-Nangia P, Inohara H et al (1997) Galectin-3: a novel antiapoptotic molecule with a functional BH1 (NHGR) domain of Bcl-2 family. Cancer Res 57:5272–5276

    CAS  PubMed  Google Scholar 

  5. Varki A, Cummings RD, Esko JD et al (2009) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  6. Varki A (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3:97–101

    Article  CAS  PubMed  Google Scholar 

  7. Byrd JC, Bresalier RC (2004) Mucins and mucin binding proteins in colorectal cancer. Cancer Metastasis Rev 23:77–99

    Article  CAS  PubMed  Google Scholar 

  8. Fukuda M (2002) Role of mucin-type O-glycans in cell adhesion. Biochim Biophys Acta 1573:394–405

    Article  CAS  PubMed  Google Scholar 

  9. Shogren RL, Gerken TA, Jentoft N (1989) Role of glycosylation on the conformation and chain dimensions of O-linked glycoproteins: light-scattering studies of ovine submaxillary mucin. Biochemistry 28:5526–5536

    Article  Google Scholar 

  10. Hang HC, Bertozzi CR (2005) The chemistry and biology of mucin-type O-linked glycosylation. Bioorg Med Chem 13:5021–5034

    Article  CAS  PubMed  Google Scholar 

  11. Hanisch FG, Muller S (2000) MUC1: the polymorphic appearance of a human mucin. Glycobiology 10:439–449

    Article  CAS  PubMed  Google Scholar 

  12. Hakomori S (2002) The glycosynapse. Proc Natl Acad Sci U S A 99:225–232

    Article  CAS  PubMed Central  Google Scholar 

  13. Singh PK, Hollingsworth MA (2006) Cell surface-associated mucins in signal transduction. Trends Cell Biol 16:467–476

    Article  CAS  PubMed  Google Scholar 

  14. Dube DH, Bertozzi CR (2005) Glycans in cancer and inflammation - potential for therapeutics and diagnostics. Nat Rev Drug Discov 4:477–488

    Article  CAS  PubMed  Google Scholar 

  15. Yu LG, Andrews N, Zhao Q et al (2007) Galectin-3 interaction with thomsen-friedenreich disaccharide on cancer-associated MUC1 causes increased cancer cell endothelial adhesion. J Biol Chem 282:773–781

    Article  CAS  PubMed  Google Scholar 

  16. Brewer CF, Miceli MC, Baum LG (2002) Clusters, bundles, arrays and lattices: novel mechanisms for lectin-saccharide-mediated cellular interactions. Curr Opin Struct Biol 12:616–623

    Article  CAS  PubMed  Google Scholar 

  17. Lau KS, Partridge EA, Grigorian A et al (2007) Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. Cell 129:123–134

    Article  CAS  PubMed  Google Scholar 

  18. Daniels MA, Hogquist KA, Jameson SC (2002) Sweet 'n' sour: the impact of differential glycosylation on T cell responses. Nat Immunol 3:903–910

    Article  CAS  PubMed  Google Scholar 

  19. Pace KE, Lee C, Stewart PL et al (1999) Restricted receptor segregation into membrane microdomains occurs on human T cells during apoptosis induced by galectin 1. J Immunol 163:3801–3811

    CAS  PubMed  Google Scholar 

  20. Gerken TA (2004) Kinetic modeling confirms the biosynthesis of mucin core 1 (β-Gal(1-3)α-GalNAc-O-Ser/Thr) O-glycan structures are modulated by neighboring glycosylation effects. Biochemistry 43:4137–4142

    Article  CAS  PubMed  Google Scholar 

  21. Eckhardt AE, Timpte CS, DeLuca AW et al (1997) The complete cDNA sequence and structural polymorphism of the polypeptide chain of porcine submaxillary mucin. J Biol Chem 272:33204–33210

    Article  CAS  PubMed  Google Scholar 

  22. Carlson D (1968) Structures and immunological properties of oligosaccharides isolated from pig submaxillary mucins. J Biol Chem 243:616–626

    Article  CAS  PubMed  Google Scholar 

  23. Gerken TA, Jentoft N (1987) Structure and dynamics of porcine submaxillary mucin as determined by natural abundance carbon-13 nmr spectroscopy. Biochemistry 26:4689–4699

    Article  CAS  PubMed  Google Scholar 

  24. Gerken TA, Owens CL, Pasumarthy M (1997) Determination of the site-specific O-glycoslyation pattern of the porcine submaxillary mucin tandem repeat glycopeptide. J Biol Chem 272:9709–9719

    Article  CAS  PubMed  Google Scholar 

  25. Sorensen AL, Celso AR, Trap MA et al (2006) Chemoenzymatically synthesized multimeric Tn/STn MUC1 glycopeptides elicit cancer specific anti-MUC1 antibody responses and override tolerance. Glycobiology 16:96–107

    Article  CAS  PubMed  Google Scholar 

  26. Goldstein IJ, Poretz RD (1986) Isolation, physicochemical characterization, and carbohydrate-binding specificity of lectins. In: Liener IE, Sharon N, Goldstein IJ (eds) The lectins. Academic Press, Inc., New York

    Google Scholar 

  27. Dam TK, Gabius HJ, Andre S et al (2005) Galectins bind to the multivalent glycoprotein asialofetuin with enhanced affinities and a gradient of decreasing binding constants. Biochemistry 44:12564–12571

    Article  CAS  PubMed  Google Scholar 

  28. Dam TK, Gerken TA, Cavada BS et al (2007) Binding studies of α-GalNAc specific lectins to the α-GalNAc (Tn-antigen) form of porcine submaxillary mucin and its smaller fragments. J Biol Chem 282:28256–22826

    Article  CAS  PubMed  Google Scholar 

  29. Kiessling LL, Pontrello JK, Schuster MC (2003) Synthetic multivalent carbohydrate ligands as effectors or inhibitors of biological processes. In: Wong CH (ed) Carbohydrate-based drug discovery. Wiley-VCH, Weinheim

    Google Scholar 

  30. Kiessling LL, Gestwicki JE, Strong LE (2006) Synthetic multivalent ligands as probes of signal transduction. Angew Chem Int Ed Eng 45:2348–2368

    Article  CAS  Google Scholar 

  31. Dam TK, Brewer CF (2007) Fundamentals of lectin-carbohydrate interactions. In: Kamerling JP (ed) Comprehensive glycoscience, vol 3. Elsevier, Ltd., Oxford

    Google Scholar 

  32. Kanai M, Mortell KLL (1997) Varying the size of multivalent ligands: the dependence of concanavalin A binding on neoglycopolymer length. J Am Chem Soc 119:9931–9932

    Article  CAS  Google Scholar 

  33. Dam TK, Roy R, Das SK et al (2000) Binding of multivalent carbohydrates to concanavalin A and Dioclea grandiflora lectin. Thermodynamic analysis of the “multivalency effect”. J Biol Chem 275:14223–14230

    Article  CAS  PubMed  Google Scholar 

  34. Lotan R, Skutelsky E, Danon D et al (1975) The purification, composition, and specificity of the anti-T lectin from peanut (Arachis hypogaea). J Biol Chem 250:8518–8523

    Article  CAS  PubMed  Google Scholar 

  35. Dessen A, Gupta D, Sabesan S et al (1995) X-ray crystal structure of the soybean agglutinin cross-linked with a biantennary analog of the blood group I carbohydrate antigen. Biochemistry 34:4933–4942

    Article  CAS  PubMed  Google Scholar 

  36. Gestwicki JE, Strong LE, Cairo CW et al (2002) Cell aggregation by scaffolded receptor clusters. Chem Biol 9:163–169

    Article  CAS  PubMed  Google Scholar 

  37. Mandal DK, Brewer CF (1992) Cross-linking activity of the 14-kilodalton β-galactose-specific vertebrate lectin with asialofetuin: comparison with several galactose-specific plant lectins. Biochemistry 31:8465–8472

    Article  CAS  PubMed  Google Scholar 

  38. Dam TK, Roy R, Page D et al (2002) Negative cooperativity associated with binding of multivalent carbohydrates to lectins. Thermodynamic analysis of the “multivalency effect”. Biochemistry 41:1351–1358

    Article  CAS  PubMed  Google Scholar 

  39. Dam TK, Brewer CF (2002) Thermodynamic studies of lectin-carbohydrate interactions by isothermal titration calorimetry. Chem Rev 102:387–429

    Article  CAS  PubMed  Google Scholar 

  40. Calvete JJ, Santos CF, Mann K et al (1998) Amino acid sequence, glycan structure, and proteolytic processing of the lectin of Vatairea macrocarpa seeds. FEBS Lett 452:286–292

    Article  Google Scholar 

  41. Burchell JM, Beatson R, Graham R et al (2018) O-linked mucin-type glycosylation in breast cancer. Biochem Soc Trans 46:779–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Morozov V, Borkowski J, Hanisch FG (2018) The double face of mucin-type O-glycans in lectin-mediated infection and immunity. Molecules 23:1151

    Article  PubMed Central  CAS  Google Scholar 

  43. Carlow DA, Gossens K, Naus S et al (2009) PSGL-1 function in immunity and steady state homeostasis. Immunol Rev 230:75–96

    Article  CAS  PubMed  Google Scholar 

  44. Tamura M, Tanaka T, Fujii N et al (2020) Potential interaction between galectin-2 and MUC5AC in mouse gastric mucus. Biol Pharm Bull 43:356–360

    Article  CAS  PubMed  Google Scholar 

  45. Leclaire C, Lecointe K, Gunning PA et al (2018) Molecular basis for intestinal mucin recognition by galectin-3 and C-type lectins. FASEB J 32(6):3301–3320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Part of this work was supported by National Science Foundation Grant 1608537 (to T.K.D.). A part of this work was supported by a startup fund (to P.B.) and by the Research Excellence Fund (to T.K.D.) provided by Michigan Technological University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarun K. Dam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dam, T.K., Edwards, J.L., Kadav, P.D., Brewer, C.F. (2022). Mechanism of Mucin Recognition by Lectins: A Thermodynamic Study. In: Stowell, S.R., Arthur, C.M., Cummings, R.D. (eds) Galectins. Methods in Molecular Biology, vol 2442. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2055-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2055-7_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2054-0

  • Online ISBN: 978-1-0716-2055-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics