Skip to main content

Extract Metabolomic Information from Mass Spectrometry Images Using Advanced Data Analysis

  • Protocol
  • First Online:
Mass Spectrometry Imaging of Small Molecules

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2437))

Abstract

Mass spectrometry imaging (MSI) data generally contains large sizes and high-dimensional structures due to their inherent complex chemical and spatial information. A variety of data analysis methods have been developed to comprehensively analyze the MSI experimental results and extract essential information. Here, we describe the protocols of data preprocessing and emerging methods for data analyses, including multivariate analysis, machine learning, and image fusion, that have been applied to the data generated from the Single-probe MSI technique. These strategies and methods can be potentially applied to handling data produced from other MSI techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buchberger AR, DeLaney K, Johnson J, Li LJ (2018) Mass spectrometry imaging: a review of emerging advancements and future insights. Anal Chem 90(1):240–265. https://doi.org/10.1021/acs.analchem.7b04733

    Article  CAS  PubMed  Google Scholar 

  2. Angel PM, Caprioli RM (2013) Matrix-assisted laser desorption ionization imaging mass spectrometry: in situ molecular mapping. Biochemistry 52(22):3818–3828. https://doi.org/10.1021/bi301519p

    Article  CAS  PubMed  Google Scholar 

  3. Benninghoven A (1973) Surface investigation of solids by the statical method of secondary ion mass spectroscopy (SIMS). Surf Sci 35:427–457. https://doi.org/10.1016/0039-6028(73)90232-X

    Article  CAS  Google Scholar 

  4. Takáts Z, Wiseman JM, Gologan B, Cooks RG (2004) Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306(5695):471. https://doi.org/10.1126/science.1104404

    Article  CAS  PubMed  Google Scholar 

  5. Roach PJ, Laskin J, Laskin A (2010) Nanospray desorption electrospray ionization: an ambient method for liquid-extraction surface sampling in mass spectrometry. Analyst 135(9):2233–2236. https://doi.org/10.1039/c0an00312c

    Article  CAS  PubMed  Google Scholar 

  6. Van Berkel GJ, Kertesz V, King RC (2009) High-throughput mode liquid microjunction surface sampling probe. Anal Chem 81(16):7096–7101. https://doi.org/10.1021/ac901098d

    Article  CAS  PubMed  Google Scholar 

  7. Nemes P, Vertes A (2007) Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry. Anal Chem 79(21):8098–8106. https://doi.org/10.1021/ac071181r

    Article  CAS  PubMed  Google Scholar 

  8. Rao W, Pan N, Yang Z (2015) High resolution tissue imaging using the single-probe mass spectrometry under ambient conditions. J Am Soc Mass Spectrom 26(6):986–993. https://doi.org/10.1007/s13361-015-1091-4

    Article  CAS  PubMed  Google Scholar 

  9. Amstalden van Hove ER, Smith DF, Heeren RM (2010) A concise review of mass spectrometry imaging. J Chromatogr A 1217(25):3946–3954. https://doi.org/10.1016/j.chroma.2010.01.033

    Article  CAS  PubMed  Google Scholar 

  10. McCombie G, Staab D, Stoeckli M, Knochenmuss R (2005) Spatial and spectral correlations in MALDI mass spectrometry images by clustering and multivariate analysis. Anal Chem 77(19):6118–6124. https://doi.org/10.1021/ac051081q

    Article  CAS  PubMed  Google Scholar 

  11. Alexandrov T, Becker M, Deininger SO, Ernst G, Wehder L, Grasmair M, von Eggeling F, Thiele H, Maass P (2010) Spatial segmentation of imaging mass spectrometry data with edge-preserving image denoising and clustering. J Proteome Res 9(12):6535–6546. https://doi.org/10.1021/pr100734z

    Article  CAS  PubMed  Google Scholar 

  12. Klerk LA, Broersen A, Fletcher IW, van Liere R, Heeren RMA (2007) Extended data analysis strategies for high resolution imaging MS: new methods to deal with extremely large image hyperspectral datasets. Int J Mass Spectrom 260(2–3):222–236. https://doi.org/10.1016/j.ijms.2006.11.014

    Article  CAS  Google Scholar 

  13. Dill AL, Eberlin LS, Costa AB, Zheng C, Ifa DR, Cheng LA, Masterson TA, Koch MO, Vitek O, Cooks RG (2011) Multivariate statistical identification of human bladder carcinomas using ambient ionization imaging mass spectrometry. Chem Eur J 17(10):2897–2902. https://doi.org/10.1002/chem.201001692

    Article  CAS  PubMed  Google Scholar 

  14. Alexandrov T (2012) MALDI imaging mass spectrometry: statistical data analysis and current computational challenges. BMC Bioinformatics 13 Suppl 16:S11. https://doi.org/10.1186/1471-2105-13-S16-S11

    Article  CAS  PubMed  Google Scholar 

  15. Hanselmann M, Kirchner M, Renard BY, Amstalden ER, Glunde K, Heeren RM, Hamprecht FA (2008) Concise representation of mass spectrometry images by probabilistic latent semantic analysis. Anal Chem 80(24):9649–9658

    Article  CAS  Google Scholar 

  16. Deininger S-O, Ebert MP, Fütterer A, Gerhard M, Röcken C (2008) MALDI imaging combined with hierarchical clustering as a new tool for the interpretation of complex human cancers. J Proteome Res 7(12):5230–5236. https://doi.org/10.1021/pr8005777

    Article  CAS  PubMed  Google Scholar 

  17. Alexandrov T, Kobarg JH (2011) Efficient spatial segmentation of large imaging mass spectrometry datasets with spatially aware clustering. Bioinformatics 27(13):i230–i238. https://doi.org/10.1093/bioinformatics/btr246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nampei M, Horikawa M, Ishizu K, Yamazaki F, Yamada H, Kahyo T, Setou M (2019) Unsupervised machine learning using an imaging mass spectrometry dataset automatically reassembles grey and white matter. Sci Rep 9(1):13213. https://doi.org/10.1038/s41598-019-49819-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tian X, Xie BE, Zou Z, Jiao Y, Lin LE, Chen CL, Hsu CC, Peng JM, Yang ZB (2019) Multimodal imaging of amyloid plaques: fusion of the single-probe mass spectrometry image and fluorescence microscopy image. Anal Chem 91(20):12882–12889. https://doi.org/10.1021/acs.analchem.9b02792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Van de Plas R, Yang JH, Spraggins J, Caprioli RM (2015) Image fusion of mass spectrometry and microscopy: a multimodality paradigm for molecular tissue mapping. Nat Methods 12(4):366–U138. https://doi.org/10.1038/Nmeth.3296

    Article  PubMed  PubMed Central  Google Scholar 

  21. Vollnhals F, Audinot J-N, Wirtz T, Mercier-Bonin M, Fourquaux I, Schroeppel B, Kraushaar U, Lev-Ram V, Ellisman MH, Eswara S (2017) Correlative microscopy combining secondary ion mass spectrometry and electron microscopy: comparison of intensity–hue–saturation and Laplacian pyramid methods for image fusion. Anal Chem 89(20):10702–10710. https://doi.org/10.1021/acs.analchem.7b01256

    Article  CAS  PubMed  Google Scholar 

  22. Neumann EK, Comi TJ, Spegazzini N, Mitchell JW, Rubakhin SS, Gillette MU, Bhargava R, Sweedler JV (2018) Multimodal chemical analysis of the brain by high mass resolution mass spectrometry and infrared spectroscopic imaging. Anal Chem 90(19):11572–11580. https://doi.org/10.1021/acs.analchem.8b02913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tian X, Zhang G, Zou Z, Yang Z (2019) Anticancer drug affects metabolomic profiles in multicellular spheroids: studies using mass spectrometry imaging combined with machine learning. Anal Chem 91(9):5802–5809. https://doi.org/10.1021/acs.analchem.9b00026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tian X, Zhang G, Shao Y, Yang Z (2018) Towards enhanced metabolomic data analysis of mass spectrometry image: multivariate curve resolution and machine learning. Anal Chim Acta 1037:211–219. https://doi.org/10.1016/j.aca.2018.02.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rao W, Pan N, Tian X, Yang ZB (2016) High-resolution ambient MS imaging of negative ions in positive ion mode: using dicationic reagents with the single-probe. J Am Soc Mass Spectrom 27(1):124–134. https://doi.org/10.1007/s13361-015-1287-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sun M, Yang Z (2019) Metabolomic studies of live single cancer stem cells using mass spectrometry. Anal Chem 91(3):2384–2391. https://doi.org/10.1021/acs.analchem.8b05166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Standke SJ, Colby DH, Bensen RC, Burgett AWG, Yang ZB (2019) Integrated cell manipulation platform coupled with the single-probe for mass spectrometry analysis of drugs and metabolites in single suspension cells. J Vis Exp 148:e59875. https://doi.org/10.3791/59875

    Article  CAS  Google Scholar 

  28. Rao W, Pan N, Yang Z (2016) Applications of the single-probe: mass spectrometry imaging and single cell analysis under ambient conditions. J Vis Exp 112:e53911. https://doi.org/10.3791/53911

    Article  CAS  Google Scholar 

  29. Pan N, Rao W, Standke SJ, Yang Z (2016) Using dicationic ion-pairing compounds to enhance the single cell mass spectrometry analysis using the single-probe: a microscale sampling and ionization device. Anal Chem 88(13):6812–6819. https://doi.org/10.1021/acs.analchem.6b01284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pan N, Rao W, Kothapalli NR, Liu RM, Burgett AWG, Yang Z (2014) The single-probe: a miniaturized multifunctional device for single cell mass spectrometry analysis. Anal Chem 86(19):9376–9380. https://doi.org/10.1021/Ac5029038

    Article  CAS  PubMed  Google Scholar 

  31. Sun M, Tian X, Yang Z (2017) Microscale mass spectrometry analysis of extracellular metabolites in live multicellular tumor spheroids. Anal Chem 89(17):9069–9076. https://doi.org/10.1021/acs.analchem.7b01746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chambers MC, Maclean B, Burke R, Amodei D, Ruderman DL, Neumann S, Gatto L, Fischer B, Pratt B, Egertson J, Hoff K, Kessner D, Tasman N, Shulman N, Frewen B, Baker TA, Brusniak MY, Paulse C, Creasy D, Flashner L, Kani K, Moulding C, Seymour SL, Nuwaysir LM, Lefebvre B, Kuhlmann F, Roark J, Rainer P, Detlev S, Hemenway T, Huhmer A, Langridge J, Connolly B, Chadick T, Holly K, Eckels J, Deutsch EW, Moritz RL, Katz JE, Agus DB, MacCoss M, Tabb DL, Mallick P (2012) A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol 30(10):918–920. https://doi.org/10.1038/nbt.2377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kessner D, Chambers M, Burke R, Agusand D, Mallick P (2008) ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics 24(21):2534–2536. https://doi.org/10.1093/bioinformatics/btn323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Race AM, Styles IB, Bunch J (2012) Inclusive sharing of mass spectrometry imaging data requires a converter for all. J Proteome 75(16):5111–5112. https://doi.org/10.1016/j.jprot.2012.05.035

    Article  CAS  Google Scholar 

  35. Klinkert I, Chughtai K, Ellis SR, Heeren RMA (2014) Methods for full resolution data exploration and visualization for large 2D and 3D mass spectrometry imaging datasets. Int J Mass Spectrom 362:40–47. https://doi.org/10.1016/j.ijms.2013.12.012

    Article  CAS  Google Scholar 

  36. Jaumot J, Tauler R (2015) Potential use of multivariate curve resolution for the analysis of mass spectrometry images. Analyst 140(3):837–846. https://doi.org/10.1039/c4an00801d

    Article  CAS  PubMed  Google Scholar 

  37. Nakayama K, Inoue T, Sekiya S, Terada N, Miyazaki Y, Goto T, Kajihara S, Kawabata SI, Iwamoto S, Ikawa K, Oosaga J, Tsuji H, Tanaka K, Ogawa O (2014) The C-terminal fragment of prostate-specific antigen, a 2331 Da peptide, as a new urinary pathognomonic biomarker candidate for diagnosing prostate cancer. PLoS One 9(9):e107234. https://doi.org/10.1371/journal.pone.0107234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Inglese P, McKenzie JS, Mroz A, Kinross J, Veselkov K, Holmes E, Takats Z, Nicholson JK, Glen RC (2017) Deep learning and 3D-DESI imaging reveal the hidden metabolic heterogeneity of cancer. Chem Sci 8(5):3500–3511. https://doi.org/10.1039/c6sc03738k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jaumot J, de Juan A, Tauler R (2015) MCR-ALS GUI 2.0: new features and applications. Chemometr Intell Lab Syst 140:1–12. https://doi.org/10.1016/j.chemolab.2014.10.003

    Article  CAS  Google Scholar 

  40. van der Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9:2579–2605

    Google Scholar 

  41. Eberlin LS, Norton I, Dill AL, Golby AJ, Ligon KL, Santagata S, Cooks RG, Agar NY (2012) Classifying human brain tumors by lipid imaging with mass spectrometry. Cancer Res 72(3):645–654. https://doi.org/10.1158/0008-5472.CAN-11-2465

    Article  CAS  PubMed  Google Scholar 

  42. Schölkopf B, Smola AJ (2002) Learning with kernels: support vector machines, regularization, optimization, and beyond. Adaptive computation and machine learning. MIT Press, Cambridge, MA

    Google Scholar 

  43. Breiman L (2001) Random forests. Mach Learn 45(1):5–32. https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  44. Svetnik V, Liaw A, Tong C, Culberson JC, Sheridan RP, Feuston BP (2003) Random forest: a classification and regression tool for compound classification and QSAR modeling. J Chem Inf Comput Sci 43(6):1947–1958. https://doi.org/10.1021/ci034160g

    Article  CAS  PubMed  Google Scholar 

  45. Hanselmann M, Kothe U, Kirchner M, Renard BY, Amstalden ER, Glunde K, Heeren RMA, Hamprecht FA (2009) Toward digital staining using imaging mass spectrometry and random forests. J Proteome Res 8(7):3558–3567. https://doi.org/10.1021/pr900253y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rocha B, Ruiz-Romero C, Blanco FJ (2017) Mass spectrometry imaging: a novel technology in rheumatology. Nat Rev Rheumatol 13(1):52–63. https://doi.org/10.1038/nrrheum.2016.184

    Article  CAS  PubMed  Google Scholar 

  47. Bouschen W, Schulz O, Eikel D, Spengler B (2010) Matrix vapor deposition/recrystallization and dedicated spray preparation for high-resolution scanning microprobe matrix-assisted laser desorption/ionization imaging mass spectrometry (SMALDI-MS) of tissue and single cells. Rapid Commun Mass Spectrom 24(3):355–364. https://doi.org/10.1002/rcm.4401

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research project is partially supported by grants from National Institutes of Health (R01GM116116), National Science Foundation (OCE-1634630), and Research Council of the University of Oklahoma Norman Campus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhibo Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tian, X., Zou, Z., Yang, Z. (2022). Extract Metabolomic Information from Mass Spectrometry Images Using Advanced Data Analysis. In: Lee, YJ. (eds) Mass Spectrometry Imaging of Small Molecules. Methods in Molecular Biology, vol 2437. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2030-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2030-4_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2029-8

  • Online ISBN: 978-1-0716-2030-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics