Skip to main content

Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging of Glycogen In Situ

  • Protocol
  • First Online:
Mass Spectrometry Imaging of Small Molecules

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2437))

Abstract

Histopathological detection and quantitation of glycogen in situ are important for the assessment of glycogen storage diseases and different types of cancer. The current standard method for defining the regionality of glycogen rely almost exclusively on Periodic Acid-Schiff (PAS) staining, a workflow that lacks specificity and sensitivity. Herein, we describe a new and much improved workflow to detect microenvironmental glycogen in situ using enzyme-assisted matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI). This method provides superior sensitivity and can elucidate the molecular features of glycogen structure, with 50 μm spatial resolution for a next-generation histopathological assessment of glycogen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brewer MK, Gentry MS (2019) Brain glycogen structure and its associated proteins: past, present and future. Adv Neurobiol 23:17–81. https://doi.org/10.1007/978-3-030-27480-1_2

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sullivan MA, Nitschke S, Skwara EP, Wang P, Zhao X, Pan XS, Chown EE, Wang T, Perri AM, Lee JPY, Vilaplana F, Minassian BA, Nitschke F (2019) Skeletal muscle glycogen chain length correlates with insolubility in mouse models of polyglucosan-associated neurodegenerative diseases. Cell Rep 27(5):1334–1344.e6. https://doi.org/10.1016/j.celrep.2019.04.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shrivastava A (2018) Introduction to plastics engineering. William Andrew, Cambridge, MA

    Book  Google Scholar 

  4. Melendez R, Melendez-Hevia E, Cascante M (1997) How did glycogen structure evolve to satisfy the requirement for rapid mobilization of glucose? A problem of physical constraints in structure building. J Mol Evol 45:446–455

    Article  CAS  Google Scholar 

  5. Nitschke F, Sullivan MA, Wang P, Zhao X, Chown EE, Perri AM, Israelian L, Juana-Lopez L, Bovolenta P, Rodriguez de Cordoba S, Steup M, Minassian BA (2017) Abnormal glycogen chain length pattern, not hyperphosphorylation, is critical in Lafora disease. EMBO Mol Med 9(7):906–917. https://doi.org/10.15252/emmm.201707608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wasserman DH (2009) Four grams of glucose. Am J Physiol Endocrinol Metab 296(1):E11–E21. https://doi.org/10.1152/ajpendo.90563.2008

    Article  CAS  PubMed  Google Scholar 

  7. Krebs HA, Bennett DAH, DeGasquet P, Gascoyne T, Yoshida T (1963) The effect of diet on the Gluconeogenic capacity of the rat-kidney-cortex slices. Biochem J 86(22):22–27

    Article  CAS  Google Scholar 

  8. Brandstrup N, Kretchmer N (1965) The metabolism of glycogen in the lungs of the fetal rabbit. Dev Biol 11:202–216

    Article  CAS  Google Scholar 

  9. Spicer SS (1957) Histological localization of glycogen in the urinary tract and lung. J Histochem Cytochem 6:52–60

    Article  Google Scholar 

  10. Evans G (1934) The glycogen content of the rat heart. J Physiol 82(4):468

    Article  CAS  Google Scholar 

  11. Brown AM, Ransom BR (2007) Astrocyte glycogen and brain energy metabolism. Glia 55(12):1263–1271. https://doi.org/10.1002/glia.20557

    Article  PubMed  Google Scholar 

  12. Fernandes J (1995) The history of the glycogen storage diseases. Eur J Pediatr 154:423–424

    Article  CAS  Google Scholar 

  13. Hojlund K, Staehr P, Hansen BF, Green KA, Hardie DG, Richter EA, Beck-Nielsen H, Wojtaszewski JFP (2003) Increased phosphorylation of skeletal muscle glycogen synthase at NH2-terminal sites during physiological hyperinsulinemia in type 2 diabetes. Diabetes 52:1393–1402

    Article  CAS  Google Scholar 

  14. Roach PJ (2015) Glycogen phosphorylation and Lafora disease. Mol Asp Med 46:78–84. https://doi.org/10.1016/j.mam.2015.08.003

    Article  CAS  Google Scholar 

  15. Zois CE, Harris AL (2016) Glycogen metabolism has a key role in the cancer microenvironment and provides new targets for cancer therapy. J Mol Med (Berl) 94(2):137–154. https://doi.org/10.1007/s00109-015-1377-9

    Article  CAS  Google Scholar 

  16. Postler E, Sindern E, Vorgerd M, Schmitz I, Malin J, Müller K (2002) Fatal cardiomyopathy in adult in polyglucosan body disease. Pathologe 23(3):229–234

    Article  CAS  Google Scholar 

  17. Stojkovic T, Chanut A, Laforêt P, Madelaine A, Petit F, Romero N, Malfatti E (2018) Severe asymmetric muscle weakness revealing glycogenin-1 polyglucosan body myopathy. Muscle Nerve 57(5):E122–E124

    Article  Google Scholar 

  18. Lu J-Q, Phan C, Zochodne D, Yan C (2016) Polyglucosan bodies in intramuscular nerves: association with muscle fiber denervation atrophy. J Neurol Sci 360:84–87

    Article  CAS  Google Scholar 

  19. Valles-Ortega J, Duran J, Garcia-Rocha M, Bosch C, Saez I, Pujadas L, Serafin A, Canas X, Soriano E, Delgado-García JM (2011) Neurodegeneration and functional impairments associated with glycogen synthase accumulation in a mouse model of Lafora disease. EMBO Mol Med 3(11):667–681

    Article  CAS  Google Scholar 

  20. Sinadinos C, Valles-Ortega J, Boulan L, Solsona E, Tevy MF, Marquez M, Duran J, Lopez-Iglesias C, Calbó J, Blasco E (2014) Neuronal glycogen synthesis contributes to physiological aging. Aging Cell 13(5):935–945

    Article  CAS  Google Scholar 

  21. Orhan Akman H, Emmanuele V, Kurt YG, Kurt B, Sheiko T, DiMauro S, Craigen WJ (2015) A novel mouse model that recapitulates adult-onset glycogenosis type 4. Hum Mol Genet 24(23):6801–6810

    Article  CAS  Google Scholar 

  22. Nitschke S, Petkovic S, Ahonen S, Minassian BA, Nitschke F (2020) Sensitive quantification of alpha-glucans in mouse tissues, cell cultures, and human cerebrospinal fluid. J Biol Chem 295(43):14698–14709. https://doi.org/10.1074/jbc.RA120.015061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. DePaoli-Roach AA, Contreras CJ, Segvich DM, Heiss C, Ishihara M, Azadi P, Roach PJ (2015) Glycogen phosphomonoester distribution in mouse models of the progressive myoclonic epilepsy, Lafora disease. J Biol Chem 290(2):841–850. https://doi.org/10.1074/jbc.M114.607796

    Article  CAS  PubMed  Google Scholar 

  24. Young LEA, Brizzee CO, Macedo JKA, Murphy RD, Contreras CJ, DePaoli-Roach AA, Roach PJ, Gentry MS, Sun RC (2020) Accurate and sensitive quantitation of glucose and glucose phosphates derived from storage carbohydrates by mass spectrometry. Carbohydr Polym 230:115651. https://doi.org/10.1016/j.carbpol.2019.115651

    Article  CAS  PubMed  Google Scholar 

  25. Brust H, Orzechowski S, Fettke J (2020) Starch and glycogen analyses: methods and techniques. Biomolecules 10(7):1020. https://doi.org/10.3390/biom10071020

    Article  CAS  PubMed Central  Google Scholar 

  26. Roth Z, Yehezkel G, Khalaila I (2012) Identification and quantification of protein glycosylation. Int J Carbohydr Chem 2012:1–10. https://doi.org/10.1155/2012/640923

    Article  CAS  Google Scholar 

  27. Lee YJ, Perdian DC, Song Z, Yeung ES, Nikolau BJ (2012) Use of mass spectrometry for imaging metabolites in plants. Plant J 70(1):81–95

    Article  CAS  Google Scholar 

  28. Hansen RL, Lee YJ (2018) High-spatial resolution mass spectrometry imaging: toward single cell metabolomics in plant tissues. Chem Rec 18(1):65–77

    Article  CAS  Google Scholar 

  29. Camuzeaux S, Timms JF (2016) Disease profiling by MALDI MS analysis of biofluids. In: Advances in MALDI and laser-induced soft ionization mass spectrometry. Springer, Cham, pp 185–196

    Chapter  Google Scholar 

  30. Boggio KJ, Obasuyi E, Sugino K, Nelson SB, Agar NY, Agar JN (2011) Recent advances in single-cell MALDI mass spectrometry imaging and potential clinical impact. Expert Rev Proteomics 8(5):591–604

    Article  CAS  Google Scholar 

  31. Jackson SN, Wang H-YJ, Woods AS (2005) In situ structural characterization of phosphatidylcholines in brain tissue using MALDI-MS/MS. J Am Soc Mass Spectrom 16(12):2052–2056

    Article  CAS  Google Scholar 

  32. Cornett DS, Reyzer ML, Chaurand P, Caprioli RM (2007) MALDI imaging mass spectrometry: molecular snapshots of biochemical systems. Nat Methods 4(10):828–833

    Article  CAS  Google Scholar 

  33. Lemaire R, Desmons A, Tabet J, Day R, Salzet M, Fournier I (2007) Direct analysis and MALDI imaging of formalin-fixed, paraffin-embedded tissue sections. J Proteome Res 6(4):1295–1305

    Article  CAS  Google Scholar 

  34. Drake RR, Powers TW, Norris-Caneda K, Mehta AS, Angel PM (2018) In situ imaging of N-Glycans by MALDI imaging mass spectrometry of fresh or formalin-fixed paraffin-embedded tissue. Curr Protoc Protein Sci 94(1):e68. https://doi.org/10.1002/cpps.68

    Article  CAS  PubMed  Google Scholar 

  35. Powers TW, Neely BA, Shao Y, Tang H, Troyer DA, Mehta AS, Haab BB, Drake RR (2014) MALDI imaging mass spectrometry profiling of N-glycans in formalin-fixed paraffin embedded clinical tissue blocks and tissue microarrays. PLoS One 9(9):e106255. https://doi.org/10.1371/journal.pone.0106255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Drake RR, Powers TW, Jones EE, Bruner E, Mehta AS, Angel PM (2017) MALDI mass spectrometry imaging of N-linked glycans in cancer tissues. Adv Cancer Res 134:85–116. https://doi.org/10.1016/bs.acr.2016.11.009

    Article  CAS  PubMed  Google Scholar 

  37. Yokobayashi K, Misaki A, Harada T (1970) Purification and properties of pseudomonas isoamylase. Biochim Biophys Acta 212:458–469

    Article  CAS  Google Scholar 

  38. Kokkat TJ, Patel MS, McGarvey D, LiVolsi VA, Baloch ZW (2013) Archived formalin-fixed paraffin-embedded (FFPE) blocks: a valuable underexploited resource for extraction of DNA, RNA, and protein. Biopreserv Biobank 11(2):101–106. https://doi.org/10.1089/bio.2012.0052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

R.C.S. is supported through NIH R01 grant AG066653-01; St. Baldrick’s career development award; Rally foundation independent investigator grant; V-scholar foundation award; and University of Kentucky College of Medicine and Markey Cancer Center start-up funds. This research was also supported by funding from the University of Kentucky Markey Cancer Center and the NIH-funded Biospecimen Procurement & Translational Pathology Shared Resource Facility of the University of Kentucky Markey Cancer Center P30CA177558.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramon C. Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hawkinson, T.R., Sun, R.C. (2022). Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging of Glycogen In Situ. In: Lee, YJ. (eds) Mass Spectrometry Imaging of Small Molecules. Methods in Molecular Biology, vol 2437. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2030-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2030-4_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2029-8

  • Online ISBN: 978-1-0716-2030-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics