Skip to main content

Nanosecond Photochemical Reaction (nsPCR) for Enhanced Mass Spectrometric Identification, Quantification, and Visualization of Metabolites and Neuropeptides

  • Protocol
  • First Online:
Book cover Mass Spectrometry Imaging of Small Molecules

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2437))

Abstract

Small-molecule (e.g., metabolite) and low-abundance neuropeptide analyses by mass spectrometry (MS) represent important research directions and have witnessed tremendous growth and developments during past decades. With innate advantages of MS and gentle nature of soft ionization techniques including electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI), profiling and visualization of these bioactive metabolites and neuropeptides have undergone technological advancements that can be applied to real biological systems, although numerous challenges still exist. We herein present a rapid and efficient strategy to improve both metabolite and neuropeptide analysis, the nanosecond photochemical reaction (nsPCR)-enabled fast chemical derivatization. Amine-directed chemoselectivity facilitates the rapid tagging on amine-containing metabolites and neuropeptides, resulting in improved detection sensitivity. Additionally, the nsPCR generates a localized pH jump zone and enables localized thermophoresis at nanosecond timescale which benefits on-demand matrix removal during MALDI-MS identification and visualization of low-abundance biomolecules. A step-by-step nsPCR experimental protocol is introduced in detail herein for both spot analysis and imaging analysis, followed by suggestions for data analysis to ensure successful application of the nsPCR strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nicholson JK, Holmes E, Kinross JM, Darzi AW, Takats Z, Lindon JC (2012) Metabolic phenotyping in clinical and surgical environments. Nature 491(7424):384–392. https://doi.org/10.1038/nature11708

    Article  CAS  PubMed  Google Scholar 

  2. Gupta P, Gupta S, Pruthi V (2020) Techniques for detection and extraction of metabolites. In: Engineering of microbial biosynthetic pathways. Springer, Singapore, pp 33–51. https://doi.org/10.1007/978-981-15-2604-6_3

    Chapter  Google Scholar 

  3. Gachumi G, Purves RW, Hopf C, El-Aneed A (2020) Fast quantification without conventional chromatography, the growing power of mass spectrometry. Anal Chem 92(13):8628–8637. https://doi.org/10.1021/acs.analchem.0c00877

    Article  CAS  PubMed  Google Scholar 

  4. Manier ML, Spraggins JM, Reyzer ML, Norris JL, Caprioli RM (2014) A derivatization and validation strategy for determining the spatial localization of endogenous amine metabolites in tissues using MALDI imaging mass spectrometry. J Mass Spectrom 49(8):665–673. https://doi.org/10.1002/jms.3411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gemperline E, Rawson S, Li L (2014) Optimization and comparison of multiple MALDI matrix application methods for small molecule mass spectrometric imaging. Anal Chem 86(20):10030–10035. https://doi.org/10.1021/ac5028534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Guo S, Tang W, Hu Y, Chen Y, Gordon A, Li B, Li P (2020) Enhancement of on-tissue chemical derivatization by laser-assisted tissue transfer for MALDI MS imaging. Anal Chem 92(1):1431–1438. https://doi.org/10.1021/acs.analchem.9b04618

    Article  CAS  PubMed  Google Scholar 

  7. Shariatgorji M, Nilsson A, Fridjonsdottir E, Vallianatou T, Kallback P, Katan L, Savmarker J, Mantas I, Zhang X, Bezard E, Svenningsson P, Odell LR, Andren PE (2019) Comprehensive mapping of neurotransmitter networks by MALDI-MS imaging. Nat Methods 16(10):1021–1028. https://doi.org/10.1038/s41592-019-0551-3

    Article  CAS  PubMed  Google Scholar 

  8. Santa T (2011) Derivatization reagents in liquid chromatography/electrospray ionization tandem mass spectrometry. Biomed Chromatogr 25(1–2):1–10. https://doi.org/10.1002/bmc.1548

    Article  CAS  PubMed  Google Scholar 

  9. Plotka-Wasylka JM, Morrison C, Biziuk M, Namiesnik J (2015) Chemical derivatization processes applied to amine determination in samples of different matrix composition. Chem Rev 115(11):4693–4718. https://doi.org/10.1021/cr4006999

    Article  CAS  PubMed  Google Scholar 

  10. Cao Q, Wang Y, Chen B, Ma F, Hao L, Li G, Ouyang C, Li L (2019) Visualization and identification of neurotransmitters in crustacean brain via multifaceted mass spectrometric approaches. ACS Chem Neurosci 10(3):1222–1229. https://doi.org/10.1021/acschemneuro.8b00730

    Article  CAS  PubMed  Google Scholar 

  11. Sun C, Liu W, Geng Y, Wang X (2020) On-tissue derivatization strategy for mass spectrometry imaging of carboxyl-containing metabolites in biological tissues. Anal Chem 92(18):12126–12131. https://doi.org/10.1021/acs.analchem.0c02303

    Article  CAS  PubMed  Google Scholar 

  12. Deng T, Wu D, Duan C, Yan X, Du Y, Zou J, Guan Y (2017) Spatial profiling of gibberellins in a single leaf based on micro-scale matrix solid-phase dispersion and pre-column derivatization coupled with ultra-performance liquid chromatography-tandem mass spectrometry. Anal Chem 89(17):9537–9543. https://doi.org/10.1021/acs.analchem.7b02589

    Article  CAS  PubMed  Google Scholar 

  13. Wu Q, Comi TJ, Li B, Rubakhin SS, Sweedler JV (2016) On-tissue derivatization via electrospray deposition for matrix assisted laser desorption/ionization mass spectrometry imaging of endogenous fatty acids in rat brain tissues. Anal Chem 88(11):5988–5995. https://doi.org/10.1021/acs.analchem.6b01021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang SS, Wang YJ, Zhang J, Sun TQ, Guo YL (2019) Derivatization strategy for simultaneous molecular imaging of phospholipids and low-abundance free fatty acids in thyroid cancer tissue sections. Anal Chem 91(6):4070–4076. https://doi.org/10.1021/acs.analchem.8b05680

    Article  CAS  PubMed  Google Scholar 

  15. Jiang R, Jiao Y, Zhang P, Liu Y, Wang X, Huang Y, Zhang Z, Xu F (2017) Twin derivatization strategy for high-coverage quantification of free fatty acids by liquid chromatography-tandem mass spectrometry. Anal Chem 89(22):12223–12230. https://doi.org/10.1021/acs.analchem.7b03020

    Article  CAS  PubMed  Google Scholar 

  16. Qi W, Wang Y, Cao Y, Cao Y, Guan Q, Sun T, Zhang L, Guo Y (2020) Simultaneous analysis of fatty alcohols, fatty aldehydes, and sterols in thyroid tissues by electrospray ionization-ion mobility-mass spectrometry based on charge derivatization. Anal Chem 92(13):8644–8648. https://doi.org/10.1021/acs.analchem.0c01292

    Article  CAS  PubMed  Google Scholar 

  17. Zhuang M, Hou Z, Chen P, Liang G, Huang G (2020) Introducing charge tag via click reaction in living cells for single cell mass spectrometry. Chem Sci 11(28):7308–7312. https://doi.org/10.1039/d0sc00259c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kaya I, Brulls SM, Dunevall J, Jennische E, Lange S, Martensson J, Ewing AG, Malmberg P, Fletcher JS (2018) On-tissue chemical derivatization of Catecholamines using 4-(N-methyl) Pyridinium Boronic acid for ToF-SIMS and LDI-ToF mass spectrometry imaging. Anal Chem 90(22):13580–13590. https://doi.org/10.1021/acs.analchem.8b03746

    Article  CAS  PubMed  Google Scholar 

  19. Zhang H, Shi X, Vu NQ, Li G, Li Z, Shi Y, Li M, Wang B, Welham NV, Patankar MS, Weisman P, Li L (2020) On-tissue derivatization with Girard's reagent P enhances N-glycan signals for formalin-fixed paraffin-embedded tissue sections in MALDI mass spectrometry imaging. Anal Chem 92(19):13361–13368. https://doi.org/10.1021/acs.analchem.0c02704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ryan E, Reid GE (2016) Chemical derivatization and ultrahigh resolution and accurate mass spectrometry strategies for "shotgun" Lipidome analysis. Acc Chem Res 49(9):1596–1604. https://doi.org/10.1021/acs.accounts.6b00030

    Article  CAS  PubMed  Google Scholar 

  21. Qiao L, Roussel C, Wan J, Kong J, Yang P, Girault HH, Liu B (2008) MALDI in-source photooxidation reactions for online peptide tagging. Angew Chem Int Ed 47(14):2646–2648. https://doi.org/10.1002/anie.200703876

    Article  CAS  Google Scholar 

  22. Lascoux D, Paramelle D, Subra G, Heymann M, Geourjon C, Martinez J, Forest E (2007) Discrimination and selective enhancement of signals in the MALDI mass spectrum of a protein by combining a matrix-based label for lysine residues with a neutral matrix. Angew Chem Int Ed 46(29):5594–5597. https://doi.org/10.1002/anie.200700811

    Article  CAS  Google Scholar 

  23. Wienken CJ, Baaske P, Rothbauer U, Braun D, Duhr S (2010) Protein-binding assays in biological liquids using microscale thermophoresis. Nat Commun 1:1–7. https://doi.org/10.1038/ncomms1093

    Article  CAS  Google Scholar 

  24. Seidel SA, Wienken CJ, Geissler S, Jerabek-Willemsen M, Duhr S, Reiter A, Trauner D, Braun D, Baaske P (2012) Label-free microscale thermophoresis discriminates sites and affinity of protein-ligand binding. Angew Chem Int Ed 51(42):10656–10659. https://doi.org/10.1002/anie.201204268

    Article  CAS  Google Scholar 

  25. Moller FM, Kiess M, Braun D (2016) Photochemical microscale electrophoresis allows fast quantification of biomolecule binding. J Am Chem Soc 138(16):5363–5370. https://doi.org/10.1021/jacs.6b01756

    Article  CAS  PubMed  Google Scholar 

  26. Li G, Ma F, Cao Q, Zheng Z, DeLaney K, Liu R, Li L (2019) Nanosecond photochemically promoted click chemistry for enhanced neuropeptide visualization and rapid protein labeling. Nat Commun 10(1):4697. https://doi.org/10.1038/s41467-019-12548-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li G, Cao Q, Liu Y, DeLaney K, Tian Z, Moskovets E, Li L (2019) Characterizing and alleviating ion suppression effects in atmospheric pressure matrix-assisted laser desorption/ionization. Rapid Commun Mass Spectrom 33(4):327–335. https://doi.org/10.1002/rcm.8358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen B, OuYang C, Tian Z, Xu M, Li L (2018) A high resolution atmospheric pressure matrix-assisted laser desorption/ionization-quadrupole-orbitrap MS platform enables in situ analysis of biomolecules by multi-mode ionization and acquisition. Anal Chim Acta 1007:16–25. https://doi.org/10.1016/j.aca.2017.12.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Patiny L, Borel A (2013) ChemCalc: a building block for tomorrow's chemical infrastructure. J Chem Inf Model 53(5):1223–1228. https://doi.org/10.1021/ci300563h

    Article  CAS  PubMed  Google Scholar 

  30. Robichaud G, Garrard KP, Barry JA, Muddiman DC (2013) MSiReader: an open-source Interface to view and analyze high resolving power MS imaging files on Matlab platform. J Am Soc Mass Spectrom 24(5):718–721. https://doi.org/10.1007/s13361-013-0607-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was funded in part by NIH (R56MH110215, R01DK071801, and P01CA250972) and NSF (CHE-1710140). The MALDI Orbitrap instrument and Q Exactive Orbitrap instrument were purchased through the support of an NIH shared instrument grant S10RR029531. LL acknowledges a Vilas Distinguished Achievement Professorship and the Charles Melbourne Johnson Distinguished Chair Professorship with funding provided by the Wisconsin Alumni Research Foundation and University of Wisconsin-Madison School of Pharmacy. GL thanks the funding support by the Fundamental Research Funds for the Central Universities (Nankai University, 020/63213057) and by the National Natural Science Foundation of China (22104064). The authors would like to thank Drs. Eugene Moskovets and Vladimir Doroshenko from MassTech Inc. for access to a SubAP MALDI source and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingjun Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Li, G., Liu, Y., Li, L. (2022). Nanosecond Photochemical Reaction (nsPCR) for Enhanced Mass Spectrometric Identification, Quantification, and Visualization of Metabolites and Neuropeptides. In: Lee, YJ. (eds) Mass Spectrometry Imaging of Small Molecules. Methods in Molecular Biology, vol 2437. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2030-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2030-4_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2029-8

  • Online ISBN: 978-1-0716-2030-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics