Skip to main content

Cell-Free Gene Expression from DNA Brushes

  • Protocol
  • First Online:
Cell-Free Gene Expression

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2433))

Abstract

Linear double-stranded DNA polymers coding for synthetic genes immobilized on a surface form a brush as a center for cell-free gene expression, with DNA density 102–103 fold higher than in bulk solution reactions. A brush localizes the transcription-translation machinery in cell extracts or in cell-free reconstituted reactions from purified components, creating a concentrated source of RNA and proteins. Newly synthesized molecules can form circuits regulating gene expression in the same brush or adjacent ones. They can also assemble into functional complexes and machines such as ribosomal units, then analyzed by capture on prepatterned antibodies or by cascaded reactions. DNA brushes are arranged as a single center or multiple ones on a glass coverslip, in miniaturized compartments carved in silicon wafers, or in elastomeric microfluidic devices. Brushes create genetically programmable artificial cells with steady-state dynamics of protein synthesis. Here, we provide the basic procedure for surface patterning, DNA immobilization, capture of protein products on antibody traps and fluorescent imaging. The method of DNA brush surface patterning enables simple parallelization of cell-free gene expression reactions for high throughput studies with increased imaging sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bracha D, Karzbrun E, Daube SS, Bar-Ziv RH (2014) Emergent properties of dense DNA phases toward artificial biosystems on a surface. Acc Chem Res 47:1912–1921. https://doi.org/10.1021/ar5001428

    Article  CAS  PubMed  Google Scholar 

  2. Tayar AM, Daube SS, Bar-Ziv RH (2017) Progress in programming spatiotemporal patterns and machine-assembly in cell-free protein expression systems. Curr Opin Chem Biol 40:37–46. https://doi.org/10.1016/j.cbpa.2017.05.005

    Article  CAS  PubMed  Google Scholar 

  3. Efrat Y, Tayar AM, Daube SS et al (2018) Electric-field manipulation of a compartmentalized cell-free gene expression reaction. ACS Synth Biol 7:1829–1833. https://doi.org/10.1021/acssynbio.8b00160

    Article  CAS  PubMed  Google Scholar 

  4. Vonshak O, Divon Y, Förste S et al (2020) Programming multi-protein assembly by gene-brush patterns and two-dimensional compartment geometry. Nat Nanotechnol 15(9):783–791. https://doi.org/10.1038/s41565-020-0720-7

    Article  CAS  PubMed  Google Scholar 

  5. Levy M, Falkovich R, Vonshak O, et al (2021) Boundary-Free Ribosome Compartmentalization by Gene Expression on a Surface. ACS Synth Biol 10:609–619. https://doi.org/10.1021/acssynbio.0c00613

  6. Levy M, Falkovich R, Daube SS, Bar-Ziv RH (2020) Autonomous synthesis and assembly of a ribosomal subunit on a chip. Sci Adv 6:eaaz6020. https://doi.org/10.1126/sciadv.aaz6020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Karzbrun E, Tayar AM, Noireaux V, Bar-Ziv RH (2014) Programmable on-chip DNA compartments as artificial cells. Science 345:829–832. https://doi.org/10.1126/science.1255550

    Article  CAS  PubMed  Google Scholar 

  8. Tayar AM, Karzbrun E, Noireaux V, Bar-Ziv RH (2017) Synchrony and pattern formation of coupled genetic oscillators on a chip of artificial cells. Proc Natl Acad Sci U S A 114:11609–11614. https://doi.org/10.1073/pnas.1710620114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tayar A, Karzbrun E, Noireaux V, Bar-Ziv R (2015) Propagating gene expression fronts in a one-dimensional coupled system of artificial cells. Nat Phys 11:1037–1041

    Article  CAS  Google Scholar 

  10. Greiss F, Daube SS, Noireaux V, Bar-Ziv R (2020) From deterministic to fuzzy decision-making in artificial cells. Nat Commun 11:5648. https://doi.org/10.1038/s41467-020-19395-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Buxboim A, Daube SS, Bar-Ziv R (2008) Synthetic gene brushes: a structure-function relationship. Mol Syst Biol 4:181. https://doi.org/10.1038/msb.2008.20

    Article  PubMed  PubMed Central  Google Scholar 

  12. Shin J, Noireaux V (2012) An E. coli cell-free expression toolbox: application to synthetic gene circuits and artificial cells. ACS Synth Biol 1:29–41. https://doi.org/10.1021/sb200016s

    Article  CAS  PubMed  Google Scholar 

  13. Shimizu Y, Inoue A, Tomari Y et al (2001) Cell-free translation reconstituted with purified components. Nat Biotechnol 19:751–755. https://doi.org/10.1038/90802

    Article  CAS  PubMed  Google Scholar 

  14. Buxboim A, Bar-Dagan M, Frydman V et al (2007) A single-step photolithographic interface for cell-free gene expression and active biochips. Small 3:500–510. https://doi.org/10.1002/smll.200600489

    Article  CAS  PubMed  Google Scholar 

  15. Marshall R, Maxwell CS, Collins SP et al (2017) Short DNA containing x sites enhances DNA stability and gene expression in E. coli cell-free transcription-translation systems. Biotechnol Bioeng 9999:1–5. https://doi.org/10.1002/bit.26333

    Article  CAS  Google Scholar 

  16. Sitaraman K, Esposito D, Klarmann G et al (2004) A novel cell-free protein synthesis system. J Biotechnol 110:257–263. https://doi.org/10.1016/j.jbiotec.2004.02.014

    Article  CAS  PubMed  Google Scholar 

  17. Chemla Y, Ozer E, Schlesinger O et al (2015) Genetically expanded cell-free protein synthesis using endogenous pyrrolysyl orthogonal translation system. Biotechnol Bioeng 9999:1–11. https://doi.org/10.1002/bit.25587

    Article  CAS  Google Scholar 

  18. Filonov GS, Moon JD, Svensen N, Jaffrey SR (2014) Broccoli: rapid selection of an RNA mimic of green fluorescent protein by fluorescence-based selection and directed evolution. J Am Chem Soc 136:16299–16308. https://doi.org/10.1021/ja508478x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Buxboim A, Daube SS, Bar-Ziv R (2009) Ultradense synthetic gene brushes on a chip. Nano Lett 9:909–913

    Article  CAS  Google Scholar 

  20. Garamella J, Marshall R, Rustad M, Noireaux V (2016) The all E. coli TX-TL toolbox 2.0: a platform for cell-free synthetic biology. ACS Synth Biol 5:344–355. https://doi.org/10.1021/acssynbio.5b00296

    Article  CAS  PubMed  Google Scholar 

  21. Daube S, Bracha D, Buxboim A, Bar-Ziv RH (2010) Compartmentalization by directional gene expression. Proc Natl Acad Sci U S A 107:2836–2841. https://doi.org/10.1073/pnas.0908919107

    Article  PubMed  PubMed Central  Google Scholar 

  22. Pardatscher G, Bracha D, Daube SS et al (2016) DNA condensation in one dimension. Nat Nanotechnol 11:1076–1081. https://doi.org/10.1038/nnano.2016.142

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roy H. Bar-Ziv .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Levy, M. et al. (2022). Cell-Free Gene Expression from DNA Brushes. In: Karim, A.S., Jewett, M.C. (eds) Cell-Free Gene Expression. Methods in Molecular Biology, vol 2433. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1998-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1998-8_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1997-1

  • Online ISBN: 978-1-0716-1998-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics