Skip to main content

Cell-Free Noncanonical Redox Cofactor Systems

  • Protocol
  • First Online:
Cell-Free Gene Expression

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2433))

Abstract

Noncanonical redox cofactor systems utilize nicotinamide adenine dinucleotide (phosphate), NAD(P)H, mimics to perform biotransformation reactions. Compared to systems utilizing native NAD(P)H, these noncanonical redox cofactors can offer decreased cost of cofactor supply, improved system activities, and can even supply reducing power directly to targeted reactions in complex biological environments. When these systems are operated in cell-free settings, the high level of user control afforded by direct access to the reaction system enables specific tuning of cofactor parameters, enzyme activity, and reaction progression to maximize system productivity. In this chapter, we will describe methods for constructing these cell-free noncanonical redox cofactor systems. Specifically, methods, design concepts, and system adaptation will be discussed for applying noncanonical redox cofactors to both purified protein-based and crude lysate-based biotransformation systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Paul CE, Gargiulo S, Opperman DJ, Lavandera I, Gotor-Fernández V, Gotor V, Taglieber A, Arends IWCE, Hollmann F (2013) Mimicking nature: synthetic nicotinamide cofactors for C=C bioreduction using enoate reductases. Org Lett 15(1):180–183. https://doi.org/10.1021/ol303240a

    Article  CAS  PubMed  Google Scholar 

  2. Okamoto Y, Köhler V, Paul CE, Hollmann F, Ward TR (2016) Efficient in situ regeneration of NADH mimics by an artificial metalloenzyme. ACS Catal 6(6):3553–3557. https://doi.org/10.1021/acscatal.6b00258

    Article  CAS  Google Scholar 

  3. Black WB, Zhang L, Mak WS, Maxel S, Cui Y, King E, Fong B, Sanchez Martinez A, Siegel JB, Li H (2020) Engineering a nicotinamide mononucleotide redox cofactor system for biocatalysis. Nat Chem Biol 16:87–94. https://doi.org/10.1038/s41589-019-0402-7

    Article  CAS  PubMed  Google Scholar 

  4. Richardson KN, Black WB, Li H (2020) Aldehyde production in crude lysate- and whole cell-based biotransformation using a noncanonical redox cofactor system. ACS Catal 10(15):8898–8903. https://doi.org/10.1021/acscatal.0c03070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Knaus T, Paul CE, Levy CW, de Vries S, Mutti FG, Hollmann F, Scrutton NS (2016) Better than nature: nicotinamide biomimetics that outperform natural coenzymes. J Am Chem Soc 138(3):1033–1039. https://doi.org/10.1021/jacs.5b12252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang L, Ji D, Liu Y, Wang Q, Wang X, Zhou YJ, Zhang Y, Liu W, Zhao ZK (2017) Synthetic cofactor-linked metabolic circuits for selective energy transfer. ACS Catal 7:1977–1983. https://doi.org/10.1021/acscatal.6b03579

    Article  CAS  Google Scholar 

  7. Rollin JA, Tam TK, Zhang YHP (2013) New biotechnology paradigm: cell-free biosystems for biomanufacturing. Green Chem 15:1708–1719. https://doi.org/10.1039/c3gc40625c

    Article  CAS  Google Scholar 

  8. Paul CE, Arends IWCE, Hollmann F (2014) Is simpler better? Synthetic nicotinamide cofactor analogues for redox chemistry. ACS Catal 4:788–797. https://doi.org/10.1021/cs4011056

    Article  CAS  Google Scholar 

  9. Campbell EMM, Minteer SD, Banta S (2012) Enzymatic biofuel cells utilizing a biomimetic cofactor. Chem Commun 48:1898–1900. https://doi.org/10.1039/c2cc16156g

    Article  CAS  Google Scholar 

  10. Knox RJ, Friedlos F, Jarman M, Davies LC, Goddard P, Anlezark GM, Melton RG, Sherwood RF (1995) Virtual cofactors for an Escherichia coli nitroreductase enzyme: relevance to reductively activated prodrugs in antibody directed enzyme prodrug therapy (ADEPT). Biochem Pharmacol 49(11):1641–1647. https://doi.org/10.1016/0006-2952(95)00077-d

    Article  CAS  PubMed  Google Scholar 

  11. Guo X, Liu Y, Wang Q, Wang X, Li Q, Liu W, Zhao ZK (2020) Non-natural cofactor and formate-driven reductive carboxylation of pyruvate. Angew Chem Int Ed 59:3143–3146. https://doi.org/10.1002/anie.201915303

    Article  CAS  Google Scholar 

  12. Zachos I, Nowak C, Sieber V (2019) Biomimetic cofactors and methods for their recycling. Curr Opin Chem Biol 49:59–66. https://doi.org/10.1016/j.cbpa.2018.10.003

    Article  CAS  PubMed  Google Scholar 

  13. Lo CH, Ryan JD, Kerr JB, Clark DS, Fish RH (2017) Bioorganometallic chemistry: co-factor regeneration, enzyme recognition of biomimetic 1,4-NADH analogs, and organic synthesis; tandem catalyzed regioselective formation of N-substituted-1,4-dihydronicotinamide derivatives with [Cp*Rh(bpy)H]+, coupled to chiral S-alcohol formation with HLADH, and engineered cytochrome P450s, for selective C-H oxidation reactions. J Organomet Chem 839:38–52. https://doi.org/10.1016/j.jorganchem.2017.02.013

    Article  CAS  Google Scholar 

  14. Huang R, Chen H, Upp DM, Lewis JC, Zhang YHP (2019) A high-throughput method for directed evolution of NAD(P)+-dependent dehydrogenases for the reduction of biomimetic nicotinamide analogues. ACS Catal 9(12):11709–11719. https://doi.org/10.1021/acscatal.9b03840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Guo X, Wang X, Liu Y, Li Q, Wang J, Liu W, Zhao ZK (2020) Structure-guided design of formate dehydrogenase for regeneration of a non-natural redox cofactor. Chem Eur J 26(70):16611–16615. https://doi.org/10.1002/chem.202003102

    Article  CAS  PubMed  Google Scholar 

  16. Ryan J, Fish R, Clark D (2008) Engineering cytochrome P450 enzymes for improved activity towards biomimetic 1,4-NADH cofactors. Chembiochem 9(16):2579–2582. https://doi.org/10.1002/cbic.200800246

    Article  CAS  PubMed  Google Scholar 

  17. Nowak C, Pick A, Lommes P, Sieber V (2017) Enzymatic reduction of nicotinamide biomimetic cofactors using an engineered glucose dehydrogenase: providing a regeneration system for artificial cofactors. ACS Catal 7(8):5202–5208. https://doi.org/10.1021/acscatal.7b00721

    Article  CAS  Google Scholar 

  18. Nowak C, Pick A, Csepi L, Sieber V (2017) Characterization of biomimetic cofactors according to stability, redox potentials, and enzymatic conversion by NADH oxidase from Lactobacillus pentosus. Chembiochem 18:1944–1949. https://doi.org/10.1002/cibc.201700258

    Article  CAS  PubMed  Google Scholar 

  19. Guarneri A, Westphal A, Leertouwer J, Lunsonga J, Franssen M, Opperman D, Hollmann F, van Berkel W, Paul C (2020) Flavoenzmye-mediated regioselective aromatic hydroxylation with coenzyme biomimetics. ChemCatChem 12:1368–1375. https://doi.org/10.1002/cctc.201902044

    Article  CAS  Google Scholar 

  20. Sicsic S, Durand P, Langrene S, le Goffic F (1984) A new approach for using cofactor dependent enzymes: example of alcohol dehydrogenase. FEBS Lett 176:321–324. https://doi.org/10.1016/0014-5793(84)81188-6

    Article  CAS  PubMed  Google Scholar 

  21. Eggerichs D, Mügge C, Mayweg J, Apfel U, Tischler D (2020) Enantioselective epoxidation by flavoprotein monooxygenases supported by organic solvents. Catalysts 10(5):568. https://doi.org/10.3390/catal10050568

    Article  CAS  Google Scholar 

  22. Lutz J, Hollmann F, Ho T, Schnyder A, Fish R, Schmid A (2004) Bioorganometallic chemistry: biocatalytic oxidation reactions with biomimetic NAD+/NADH co-factors and [Cp*Rh(bpy)H]+ for selective organic synthesis. J Organomet Chem 689:4783–4790. https://doi.org/10.1016/j.organchem.2004.09.044

    Article  CAS  Google Scholar 

  23. Qi J, Paul C, Hollmann F, Tischler D (2017) Changing the electron donor improves azoreductase dye degrading activity at neutral pH. Enzym Microb Technol 100:7–19. https://doi.org/10.1016/j.enzmictec.2017.02.003

    Article  CAS  Google Scholar 

  24. Löw S, Löw L, Weissenborn M, Hauer B (2016) Enhanced ene-reductase activity through alteration of artificial nicotinamide cofactor substituents. ChemCatChem 8:911–915. https://doi.org/10.1002/cctc/201501230

    Article  Google Scholar 

  25. Tischler D, Gädke E, Eggerichs D, Gomez Baraibar A, Mügge C, Scholtissek A, Paul C (2020) Asymmetric reduction of (R)-carvone through a thermostable and organic-solvent-tolerant ene-reductase. Chembiochem 21:1217–1225. https://doi.org/10.1002/cibc.201900599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ji D, Wang L, Hou S, Liu W, Wang J, Wang Q, Zhao Z (2011) Creation of bioorthogonal redox systems depending on nicotinamide flucytosine dinucleotide. J Am Chem Soc 133:20857–20862. https://doi.org/10.1021/ja2074032

    Article  CAS  PubMed  Google Scholar 

  27. Liu Y, Li Q, Wang L, Guo X, Wang J, Wang Q, Zhao ZK (2020) Engineering d-lactate dehydrogenase to favor an non-natural cofactor nicotinamide cytosine dinucleotide. Chembiochem 21:1972–1975. https://doi.org/10.1002/cibc.201900766

    Article  CAS  PubMed  Google Scholar 

  28. Liu Y, Feng Y, Wang L, Guo X, Liu W, Li Q, Wang X, Xue S, Zhao Z (2019) Structural insights into phosphite dehydrogenase variants favoring a non-natural redox cofactor. ACS Catal 9:1883–1887. https://doi.org/10.1021/acscatal.8b04822

    Article  CAS  Google Scholar 

  29. Lo HC, Fish RH (2002) Biomimetic NAD+ models for tandem cofactor regeneration, horse liver alcohol dehydrogenase recognition of 1,4-NADH derivatives, and chiral synthesis. Angew Chem 114(3):496–499. https://doi.org/10.1002/1521-3773(20020201)41:3<478::AID-ANIE478>3.0.CO;2-K

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Black, W.B., Li, H. (2022). Cell-Free Noncanonical Redox Cofactor Systems. In: Karim, A.S., Jewett, M.C. (eds) Cell-Free Gene Expression. Methods in Molecular Biology, vol 2433. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1998-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1998-8_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1997-1

  • Online ISBN: 978-1-0716-1998-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics