Skip to main content

Methods to Quantify and Relate Axonal Transport Defects to Changes in C. elegans Behavior

  • Protocol
  • First Online:
Axonal Transport

Abstract

Neuronal growth, differentiation, homeostasis, viability, and injury response heavily rely on functional axonal transport (AT). Erroneous and disturbed AT may lead to accumulation of “disease proteins” such as tau, α-synuclein, or amyloid precursor protein causing various neurological disorders. Changes in AT often lead to observable behavioral consequences in C. elegans such as impeded movements, defects in touch response, chemosensation, and even egg laying. Long C. elegans neurons with clear distinguishable axons and dendrites provide an excellent platform to analyze AT. The possibility to relate changes in AT to neuronal defects that in turn lead to quantifiable changes in worm behavior allows for the advancement of neuropathological disease models. Even more, subsequent suppressor screens may aid in identifying genes responsible for observed behavioral changes providing a target for drug development to eventually delay or cure neurological diseases. Thus, in this chapter, we summarize critical methods to identify and quantify defects in axonal transport as well as exemplified behavioral assays that may relate to these defects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maday S, Twelvetrees AE, Moughamian AJ, Holzbaur EL (2014) Axonal transport: cargo-specific mechanisms of motility and regulation. Neuron 84(2):292–309. https://doi.org/10.1016/j.neuron.2014.10.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Klinman E, Holzbaur ELF (2018) Walking forward with kinesin. Trends Neurosci 41(9):555–556. https://doi.org/10.1016/j.tins.2018.07.006

    Article  CAS  PubMed  Google Scholar 

  3. Reck-Peterson SL, Redwine WB, Vale RD, Carter AP (2018) Publisher correction: the cytoplasmic dynein transport machinery and its many cargoes. Nat Rev Mol Cell Biol 19(7):479. https://doi.org/10.1038/s41580-018-0021-2

    Article  CAS  PubMed  Google Scholar 

  4. Guedes-Dias P, Holzbaur ELF (2019) Axonal transport: driving synaptic function. Science 366(6462). https://doi.org/10.1126/science.aaw9997

  5. Yagensky O, Kalantary Dehaghi T, Chua JJ (2016) The roles of microtubule-based transport at presynaptic nerve terminals. Front Synaptic Neurosci 8:3. https://doi.org/10.3389/fnsyn.2016.00003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhao J, Fok AHK, Fan R, Kwan PY, Chan HL, Lo LH, Chan YS, Yung WH, Huang J, Lai CSW, Lai KO (2020) Specific depletion of the motor protein KIF5B leads to deficits in dendritic transport, synaptic plasticity and memory. Elife 9:e53456. https://doi.org/10.7554/eLife.53456

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sleigh JN, Rossor AM, Fellows AD, Tosolini AP, Schiavo G (2019) Axonal transport and neurological disease. Nat Rev Neurol 15(12):691–703. https://doi.org/10.1038/s41582-019-0257-2

    Article  PubMed  Google Scholar 

  8. Guo W, Stoklund Dittlau K, Van Den Bosch L (2020) Axonal transport defects and neurodegeneration: molecular mechanisms and therapeutic implications. Semin Cell Dev Biol 99:133–150. https://doi.org/10.1016/j.semcdb.2019.07.010

    Article  CAS  PubMed  Google Scholar 

  9. Li J, Le W (2013) Modeling neurodegenerative diseases in Caenorhabditis elegans. Exp Neurol 250:94–103. https://doi.org/10.1016/j.expneurol.2013.09.024

    Article  CAS  PubMed  Google Scholar 

  10. Caldwell KA, Willicott CW, Caldwell GA (2020) Modeling neurodegeneration in Caenorhabditis elegans. Dis Model Mech 13(10):dmm046110. https://doi.org/10.1242/dmm.046110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schafer WR (2015) Mechanosensory molecules and circuits in C. elegans. Pflugers Arch 467(1):39–48. https://doi.org/10.1007/s00424-014-1574-3

    Article  CAS  PubMed  Google Scholar 

  12. Collins KM, Bode A, Fernandez RW, Tanis JE, Brewer JC, Creamer MS, Koelle MR (2016) Activity of the C. elegans egg-laying behavior circuit is controlled by competing activation and feedback inhibition. Elife 5:e21126. https://doi.org/10.7554/eLife.21126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tong Zhou G, Schafer WR, Schafer RW (1998) A three-state biological point process model and its parameter estimation. IEEE Trans Signal Process 46(10):2698–2707

    Article  Google Scholar 

  14. Oh KH, Kim H (2017) Aldicarb-induced paralysis assay to determine defects in synaptic transmission in Caenorhabditis elegans. Bio Protoc 7(14):e2400. https://doi.org/10.21769/BioProtoc.2400

    Article  PubMed  PubMed Central  Google Scholar 

  15. Natale C, Barzago MM, Diomede L (2020) Caenorhabditis elegans models to investigate the mechanisms underlying tau toxicity in Tauopathies. Brain Sci 10(11). https://doi.org/10.3390/brainsci10110838

  16. De Vos KJ, Hafezparast M (2017) Neurobiology of axonal transport defects in motor neuron diseases: opportunities for translational research? Neurobiol Dis 105:283–299. https://doi.org/10.1016/j.nbd.2017.02.004

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tien NW, Wu GH, Hsu CC, Chang CY, Wagner OI (2011) Tau/PTL-1 associates with kinesin-3 KIF1A/UNC-104 and affects the motor’s motility characteristics in C. elegans neurons. Neurobiol Dis 43(2):495–506. https://doi.org/10.1016/j.nbd.2011.04.023

    Article  CAS  PubMed  Google Scholar 

  18. Wagner OI, Esposito A, Kohler B, Chen CW, Shen CP, Wu GH, Butkevich E, Mandalapu S, Wenzel D, Wouters FS, Klopfenstein DR (2009) Synaptic scaffolding protein SYD-2 clusters and activates kinesin-3 UNC-104 in C. elegans. Proc Natl Acad Sci U S A 106(46):19605–19610. https://doi.org/10.1073/pnas.0902949106

    Article  PubMed  PubMed Central  Google Scholar 

  19. Costantini LM, Fossati M, Francolini M, Snapp EL (2012) Assessing the tendency of fluorescent proteins to oligomerize under physiologic conditions. Traffic 13(5):643–649. https://doi.org/10.1111/j.1600-0854.2012.01336.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Evans TC (2006) Transformation and microinjection, WormBook, ed. The C. elegans Research Community, WormBook. https://doi.org/10.1895/wormbook.1.108.1

  21. Shaham S, (2006) WormBook: Methods in Cell Biology, WormBook, ed. The C. elegans Research Community, WormBook. https://doi.org/10.1895/wormbook.1.49.1

  22. Kumar J, Choudhary BC, Metpally R, Zheng Q, Nonet ML, Ramanathan S, Klopfenstein DR, Koushika SP (2010) The Caenorhabditis elegans Kinesin-3 motor UNC-104/KIF1A is degraded upon loss of specific binding to cargo. PLoS Genet 6(11):e1001200. https://doi.org/10.1371/journal.pgen.1001200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wu GH, Muthaiyan Shanmugam M, Bhan P, Huang YH, Wagner OI (2016) Identification and characterization of LIN-2(CASK) as a regulator of Kinesin-3 UNC-104(KIF1A) motility and clustering in neurons. Traffic 17(8):891–907. https://doi.org/10.1111/tra.12413

    Article  CAS  PubMed  Google Scholar 

  24. Neumann S, Chassefeyre R, Campbell GE, Encalada SE (2017) KymoAnalyzer: a software tool for the quantitative analysis of intracellular transport in neurons. Traffic 18(1):71–88. https://doi.org/10.1111/tra.12456

    Article  CAS  PubMed  Google Scholar 

  25. Chen CW, Peng YF, Yen YC, Bhan P, Muthaiyan Shanmugam M, Klopfenstein DR, Wagner OI (2019) Insights on UNC-104-dynein/dynactin interactions and their implications on axonal transport in Caenorhabditis elegans. J Neurosci Res 97(2):185–201. https://doi.org/10.1002/jnr.24339

    Article  CAS  PubMed  Google Scholar 

  26. Shanmugam MM, Barmaver SN, Huang HY, Bayansan O, Wagner OI (2020) PTP-3 phosphatase promotes intramolecular folding of SYD-2 to inactivate kinesin-3 UNC-104 in neurons. Mol Biol Cell 31(26):2932–2947. https://doi.org/10.1091/mbc.E19-10-0591

    Article  Google Scholar 

  27. Fatima S, Haque R, Jadiya P, Shamsuzzama, Kumar L, Nazir A (2014) Ida-1, the Caenorhabditis elegans orthologue of mammalian diabetes autoantigen IA-2, potentially acts as a common modulator between Parkinson’s disease and diabetes: role of Daf-2/Daf-16 insulin like signalling pathway. PLoS One 9(12):e113986. https://doi.org/10.1371/journal.pone.0113986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hu CC, Wu GH, Lai SF, Muthaiyan Shanmugam M, Hwu Y, Wagner OI, Yen TJ (2018) Toxic effects of size-tunable gold nanoparticles on Caenorhabditis elegans development and gene regulation. Sci Rep 8(1):15245. https://doi.org/10.1038/s41598-018-33585-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bhan P, Muthaiyan Shanmugam M, Wang D, Bayansan O, Chen CW, Wagner OI (2020) Characterization of TAG-63 and its role on axonal transport in C. elegans. Traffic 21(2):231–249. https://doi.org/10.1111/tra.12706

    Article  CAS  PubMed  Google Scholar 

  30. Hu CC, Wu GH, Hua TE, Wagner OI, Yen TJ (2018) Uptake of TiO2 nanoparticles into C. elegans neurons negatively affects axonal growth and worm locomotion behavior. ACS Appl Mater Interfaces 10(10):8485–8495. https://doi.org/10.1021/acsami.7b18818

    Article  CAS  PubMed  Google Scholar 

  31. Buckingham SD, Sattelle DB (2009) Fast, automated measurement of nematode swimming (thrashing) without morphometry. BMC Neurosci 10:84. https://doi.org/10.1186/1471-2202-10-84

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gardner M, Rosell M, Myers EM (2013) Measuring the effects of bacteria on C. elegans behavior using an egg retention assay. J Vis Exp (80):e51203. https://doi.org/10.3791/51203

  33. Li Q, Tseng KF, King SJ, Qiu W, Xu J (2018) A fluid membrane enhances the velocity of cargo transport by small teams of kinesin-1. J Chem Phys 148(12):123318. https://doi.org/10.1063/1.5006806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Guedes-Dias P, Nirschl JJ, Abreu N, Tokito MK, Janke C, Magiera MM, Holzbaur ELF (2019) Kinesin-3 responds to local microtubule dynamics to target synaptic cargo delivery to the Presynapse. Curr Biol 29(2):268–282. e268. https://doi.org/10.1016/j.cub.2018.11.065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Muthaiyan Shanmugam M, Bhan P, Huang HY, Hsieh J, Hua TE, Wu GH, Punjabi H, Lee Aplicano VD, Chen CW, Wagner OI (2018) Cilium length and Intraflagellar transport regulation by kinases PKG-1 and GCK-2 in Caenorhabditis elegans sensory neurons. Mol Cell Biol 38(7):e00612-17. https://doi.org/10.1128/MCB.00612-17

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cooper JF, Van Raamsdonk JM (2018) Modeling Parkinson’s Disease in C. elegans. J Parkinsons Dis 8(1):17–32. https://doi.org/10.3233/JPD-171258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Ingvar Wagner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Barmaver, S.N., Muthaiyan Shanmugam, M., Wagner, O.I. (2022). Methods to Quantify and Relate Axonal Transport Defects to Changes in C. elegans Behavior. In: Vagnoni, A. (eds) Axonal Transport. Methods in Molecular Biology, vol 2431. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1990-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1990-2_26

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1989-6

  • Online ISBN: 978-1-0716-1990-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics