Skip to main content

Functionalization of Tubulin: Approaches to Modify Tubulin with Biotin and DNA

  • Protocol
  • First Online:
Microtubules

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2430))

Abstract

The filamentous cytoskeletal protein microtubule, a polymer of α and β heterodimers of tubulin, plays major roles in intracellular transport as well as in vitro molecular actuation and transportation. Functionalization of tubulin dimers through covalent linkage facilitates utilization of microtubule in the nanobioengineering. Here we present a detailed description of the methodologies used to modify tubulin dimers with DNA strand and biotin through covalent interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hess H, Bachand GD (2005) Biomolecular motors. Mater Today 8:22–29

    Article  Google Scholar 

  2. Diez S, Helenius JH, Howard J (2004) Biomolecular motors operating in engineered environments. Nanobiotechnology: Concepts, Applications and Perspectives 1:1–18

    Google Scholar 

  3. Hess H, Clemmens J, Qin D, Howard J, Vogel V (2001) Light-controlled molecular shuttles made from motor proteins carrying cargo on engineered surfaces. Nano Lett 1:235–239

    Article  Google Scholar 

  4. Kabir AMR, Inoue D, Kakugo A (2020) Molecular swarm robots: recent progress and future challenges. Sci Technol Adv Mater 21:323–332

    Article  Google Scholar 

  5. Steuerwald D, Früh SM, Griss R, Lovchik RD, Vogel V (2014) Nanoshuttles propelled by motor proteins sequentially assemble molecular cargo in a microfluidic device. Lab Chip 14:3729–3738

    Article  Google Scholar 

  6. Kurz JC, Williams RC (1995) Microtubule-associated proteins and the flexibility of microtubules. Biochemistry 34:13374–13380

    Article  Google Scholar 

  7. Malcos JL, Hancock WO (2011) Engineering tubulin: microtubule functionalization approaches for nanoscale device applications. Appl Microbiol Biotechnol 90:1–10

    Article  Google Scholar 

  8. Peloquin J, Komarova Y, Borisy G (2005) Conjugation of fluorophores to tubulin. Nat Methods 2:299–303

    Article  Google Scholar 

  9. Kabir AMR, Inoue D, Kakugo A, Sada K, Gong JP (2012) Active self-organization of microtubules in an inert chamber system. Polym J 44:607–611

    Article  Google Scholar 

  10. Keya JJ, Suzuki R, Kabir AMR, Inoue D, Asanuma H, Sada K, Hess H, Kuzuya A, Kakugo A (2018) DNA-assisted swarm control in a biomolecular motor system. Nat Commun 9:453

    Article  Google Scholar 

  11. Akter M, Keya JJ, Kabir AMR, Asanuma H, Murayama K, Sada K, Kakugo A (2020) Photo-regulated trajectories of gliding microtubules conjugated with DNA. Chem Commun 56:7953–7956

    Article  Google Scholar 

  12. Bachand GD, Rivera SB, Carroll-Portillo A, Hess H, Bachand M (2006) Active capture and transport of virus particles using a biomolecular motor-driven, nanoscale antibody sandwich assay. Small 2:381–385

    Article  Google Scholar 

  13. Wada S, Rashedul Kabir AM, Ito M, Inoue D, Sada K, Kakugo A (2015) Effect of length and rigidity of microtubules on the size of ring-shaped assemblies obtained through active self-organization. Soft Matter 11:1151–1157

    Article  Google Scholar 

  14. Kakugo A, Kabir AMR, Hosoda N, Shikinaka K, Gong JP (2011) Controlled clockwise-counterclockwise motion of the ring-shaped microtubules assembly. Biomacromolecules 12:3394–3399

    Article  Google Scholar 

  15. Wada S, Kabir AMR, Kawamura R, Ito M, Inoue D, Sada K, Kakugo A (2015) Controlling the bias of rotational motion of ring-shaped microtubule assembly. Biomacromolecules 16:374–378

    Article  Google Scholar 

  16. Ito M, Kabir AMR, Inoue D, Torisawa T, Toyoshima Y, Sada K, Kakugo A (2014) Formation of ring-shaped microtubule assemblies through active self-organization on dynein. Polym J 46:220–225

    Article  Google Scholar 

  17. Ramachandran S, Ernst KH, Bachand GD, Vogel V, Hess H (2006) Selective loading of kinesin-powered molecular shuttles with protein cargo and its application to biosensing. Small 2:330–334

    Article  Google Scholar 

  18. Hyman A, Drechsel D, Kellogg D, Salser S, Sawin K, Steffen P, Wordeman L, Mitchison T (1991) Preparation of modified tubulins. Methods Enzymol 196:478–485

    Article  Google Scholar 

  19. Nitta T, Hess H (2005) Dispersion in active transport by kinesin-powered molecular shuttles. Nano Lett 5:1337–1342

    Article  Google Scholar 

  20. Hiyama S, Inoue T, Shima T, Moritani Y, Suda T, Sutoh K (2008) Autonomous loading, transport, and unloading of specified cargoes by using DNA hybridization and biological motor-based motility. Small 4:410–415

    Article  Google Scholar 

  21. Asanuma H, Ito T, Yoshida T, Liang X, Komiyama M (1999) Photoregulation of the formation and dissociation of a DNA duplex by using the cis-trans isomerization of azobenzene. Angew Chem Int Ed 38:2393–2395

    Article  Google Scholar 

  22. Castoldi M, Popov AV (2003) Purification of brain tubulin through two cycles of polymerization – depolymerization in a high-molarity buffer. Protein Expr Purif 32:83–88

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Grant-in-Aid for Scientific Research on Innovative Areas “Molecular Engine” (JSPS KAKENHI Grant Number JP18H05423), and Grant-in-Aid for Scientific Research (A) (18H03673) from Japan Society for the Pro-motion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Kakugo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Akter, M., Keya, J.J., Kabir, A.M.R., Rashid, M.R., Ishii, S., Kakugo, A. (2022). Functionalization of Tubulin: Approaches to Modify Tubulin with Biotin and DNA. In: Inaba, H. (eds) Microtubules. Methods in Molecular Biology, vol 2430. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1983-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1983-4_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1982-7

  • Online ISBN: 978-1-0716-1983-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics