Skip to main content

Analysis of Salmonella Typhi Pathogenesis in a Humanized Mouse Model

  • Protocol
  • First Online:
Bacterial Virulence

Abstract

Efforts to understand molecular mechanisms of pathogenesis of the human-restricted pathogen Salmonella enterica serovar Typhi, the causative agent of typhoid fever, have been hampered by the lack of a tractable small animal model. This obstacle has been surmounted by a humanized mouse model in which genetically modified mice are engrafted with purified CD34+ stem cells from human umbilical cord blood, designated CD34+ Hu-NSG (formerly hu-SRC-SCID) mice. We have shown that these mice develop a lethal systemic infection with S. Typhi that is dependent on the presence of engrafted human hematopoietic cells. Immunological and pathological features of human typhoid are recapitulated in this model, which has been successfully employed for the identification of bacterial genetic determinants of S. Typhi virulence. Here we describe the methods used to infect CD34+ Hu-NSG mice with S. Typhi in humanized mice and to construct and analyze a transposon-directed insertion site sequencing S. Typhi library, and provide general considerations for the use of humanized mice for the study of a human-restricted pathogen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Duff N, Steele AD, Garrett D (2020) Global action for local impact: the 11th international conference on typhoid and other invasive Salmonelloses. Clin Infect Dis 71:S59–S63

    Article  Google Scholar 

  2. Santos RL, Zhang S, Tsolis RM et al (2001) Animal models of Salmonella infections: enteritis versus typhoid fever. Microbes Infect 3:1335–1344

    Google Scholar 

  3. Johnson R, Ravenhall M, Pickard D et al (2018) Comparison of Salmonella enterica serovars Typhi and Typhimurium reveals typhoidal serovar-specific responses to bile. Infect Immun 86:e00490-17

    Google Scholar 

  4. Sabbagh SC, Lepage C, McClelland M et al (2012) Selection of Salmonella enterica serovar Typhi genes involved during interaction with human macrophages by screening of a transposon mutant library. PLoS One 7:e36643

    Google Scholar 

  5. Gal-Mor O, Boyle EC, Grassl GA (2014) Same species, different diseases: how and why typhoidal and non-typhoidal Salmonella enterica serovars differ. Front Microbiol 5:391

    Google Scholar 

  6. Bosma MJ, Carroll AM (1991) The SCID mouse mutant: definition, characterization, and potential uses. Annu Rev Immunol 9:323–350

    Article  CAS  Google Scholar 

  7. Mombaerts P, Iacomini J, Johnson RS et al (2018) RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68(5):869–877. https://pubmed.ncbi.nlm.nih.gov/1547488/

  8. Shinkai Y, Rathburn G, Lam KP et al (1992) RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68(5):855–867. https://pubmed.ncbi.nlm.nih.gov/1547487/

  9. van der Loo JC, Hanenberg H, Cooper RJ et al (1998) Nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mouse as a model system to study the engraftment and mobilization of human peripheral blood stem cells. Blood 92:2556–2570

    Article  Google Scholar 

  10. Ito M, Hiramatsu H, Kobayashi K et al (2002) NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood 100:3175–3182

    Article  CAS  Google Scholar 

  11. Brehm MA, Cuthbert A, Yang C et al (2010) Parameters for establishing humanized mouse models to study human immunity: analysis of human hematopoietic stem cell engraftment in three immunodeficient strains of mice bearing the IL2rgamma(null) mutation. Clin Immunol 135:84–98

    Article  CAS  Google Scholar 

  12. Libby SJ, Brehm MA, Greiner DL et al (2010) Humanized nonobese diabetic-scid IL2rγnull mice are susceptible to lethal Salmonella Typhi infection. Proc Natl Acad Sci U S A 107:15589–15594

    Google Scholar 

  13. Yong KSM, Her Z, Chen Q (2018) Humanized mice as unique tools for human-specific studies. Arch Immunol Ther Exp 66:245–266

    Article  Google Scholar 

  14. Shultz LD, Keck J, Burzenski L et al (2019) Humanized mouse models of immunological diseases and precision medicine. Mamm Genome 30:123–142

    Article  CAS  Google Scholar 

  15. Song J, Willinger T, Rongvaux A et al (2010) A mouse model for the human pathogen Salmonella Typhi. Cell Host Microbe 8:369–376

    Google Scholar 

  16. Firoz Mian M, Pek EA, Chenoweth MJ et al (2011) Humanized mice are susceptible to Salmonella Typhi infection. Cell Mol Immunol 8:83–87

    Google Scholar 

  17. Pearson T, Greiner DL, Shultz LD (2008) Creation of “humanized” mice to study human immunity. Curr Protoc Immunol. Chapter 15:Unit 15.21

    Google Scholar 

  18. Vladoianu IR, Chang HR, Pechère JC (1990) Expression of host resistance to Salmonella typhi and Salmonella typhimurium: bacterial survival within macrophages of murine and human origin. Microb Pathog 8:83–90

    Google Scholar 

  19. Ishibashi Y, Arai T (1995) Salmonella typhi does not inhibit phagosome-lysosome fusion in human monocyte-derived macrophages. FEMS Immunol Med Microbiol 12:55–61

    Google Scholar 

  20. Schwan WR, Huang XZ, Hu L et al (2000) Differential bacterial survival, replication, and apoptosis-inducing ability of Salmonella serovars within human and murine macrophages. Infect Immun 68:1005–1013

    Google Scholar 

  21. Pascopella L, Raupach B, Ghori N et al (1995) Host restriction phenotypes of Salmonella typhi and Salmonella gallinarum. Infect Immun 63:4329–4335

    Google Scholar 

  22. Mallory FA (1898) Histological study of typhoid fever. J Exp Med 3(6):611–638. https://rupress.org/jem/article/3/6/611/7544/A-HISTOLOGICAL-STUDY-OF-TYPHOID-FEVER

    Article  CAS  Google Scholar 

  23. Bharadwaj S, Anim JT, Ebrahim F et al (2009) Granulomatous inflammatory response in a case of typhoid fever. Med Princ Pract 18:239–241

    Article  CAS  Google Scholar 

  24. Shultz LD, Brehm MA, Garcia JV et al (2012) Humanized mice for immune system investigation: progress, promise and challenges. Nat Rev Immunol 12:786–798

    Article  CAS  Google Scholar 

  25. McIntosh BE, Brown ME, Duffin BM et al (2015) Nonirradiated NOD,B6.SCID Il2rγ−/− KitW41/W41 (NBSGW) mice support multilineage engraftment of human hematopoietic cells. Stem Cell Rep 4:171–180

    Article  CAS  Google Scholar 

  26. Robbins JD, Robbins JB (1984) Reexamination of the protective role of the capsular polysaccharide (Vi antigen) of Salmonella typhi. J Infect Dis 150:436–449

    Google Scholar 

  27. Looney RJ, Steigbigel RT (1986) Role of the Vi antigen of Salmonella typhi in resistance to host defense in vitro. J Lab Clin Med 108:506–516

    Google Scholar 

  28. Parkhill J, Dougan G, James KD et al (2001) Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature 413:848–852

    Article  CAS  Google Scholar 

  29. Richardson AR, Payne EC, Younger N et al (2011) Multiple targets of nitric oxide in the tricarboxylic acid cycle of Salmonella enterica serovar Typhimurium. Cell Host Microbe 10:33–43

    Google Scholar 

  30. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645

    Article  CAS  Google Scholar 

  31. Wang RF, Kushner SR (1991) Construction of versatile low-copy-number vectors for cloning, sequencing and gene expression in Escherichia coli. Gene 100:195–199

    Article  CAS  Google Scholar 

  32. Chang AC, Cohen SN (1978) Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol 134:1141–1156

    Article  CAS  Google Scholar 

  33. Berggren RE, Wunderlich A, Ziegler E et al (1995) HIV gp120-specific cell-mediated immune responses in mice after oral immunization with recombinant Salmonella. J Acquir Immune Defic Syndr Hum Retrovirol 10:489–495

    Google Scholar 

  34. Karlinsey JE, Stepien TA, Mayho M et al (2019) Genome-wide analysis of Salmonella enterica serovar Typhi in humanized mice reveals key virulence features. Cell Host Microbe 26:426–434.e6

    Google Scholar 

  35. Cain AK, Barquist L, Goodman AL et al (2020) A decade of advances in transposon-insertion sequencing. Nat Rev Genet 21:526–540

    Article  CAS  Google Scholar 

  36. Gallagher L, Turner C, Ramage E et al (2007) Creating recombination-activated genes and sequence-defined mutant libraries using transposons. Meth Enzymol 421:126–140

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants AI112640 (F.C.F.), AI132963 (M.A.B. and L.D.S.), OD018259 (L.D.S.), and CA034196 (L.D.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferric C. Fang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Stepien, T.A. et al. (2022). Analysis of Salmonella Typhi Pathogenesis in a Humanized Mouse Model. In: Gal-Mor, O. (eds) Bacterial Virulence. Methods in Molecular Biology, vol 2427. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1971-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1971-1_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1970-4

  • Online ISBN: 978-1-0716-1971-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics