Skip to main content

Deriving Human Naïve Embryonic Stem Cell Lines from Donated Supernumerary Embryos Using Physical Distancing and Signal Inhibition

  • Protocol
  • First Online:
Human Naïve Pluripotent Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2416))

Abstract

Until recently, naïve pluripotent stem cell lines were not captured from human embryos because protocols were based upon those devised for murine embryonic stem cells. In contrast with early lineage segregation in mouse embryos, human hypoblast specification is not solely dependent upon FGF signaling; consequently, its maturation during embryo explant culture may provide inductive signals to drive differentiation of the epiblast. To overcome this potential risk, here we describe how cells of the immature inner cell mass of human embryos can be physically separated during derivation, achieved via “immunosurgery”, to eliminate the trophectoderm, followed by disaggregation of the remaining inner cell mass cells. A modification of a culture regime developed for propagation of human pluripotent stem cells reset to the naïve state is used, which comprises serum-free medium supplemented with various inhibitors of signaling pathways, polarization, and differentiation. Colonies arising from the first plating of an inner cell mass may be pooled for ease of handling, or propagated separately to allow establishment of clonal human naïve embryonic stem cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    Article  CAS  Google Scholar 

  2. Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78:7634–7638

    Article  CAS  Google Scholar 

  3. Thomson JA, Itskovitz-Eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  CAS  Google Scholar 

  4. Rossant J, Tam PP (2017) New insights into early human development: lessons for stem cell derivation and differentiation. Cell Stem Cell 20:18–28

    Article  CAS  Google Scholar 

  5. Brons IG, Smithers LE, Trotter MW et al (2007) Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448:191–195

    Article  CAS  Google Scholar 

  6. Tesar PJ, Chenoweth JG, Brook FA et al (2007) New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448:196–199

    Article  CAS  Google Scholar 

  7. Thomas P, Beddington R (1996) Anterior primitive endoderm may be responsible for patterning the anterior neural plate in the mouse embryo. Curr Biol 6:1487–1496

    Article  CAS  Google Scholar 

  8. Ying QL, Wray J, Nichols J et al (2008) The ground state of embryonic stem cell self-renewal. Nature 453:519–523

    Article  CAS  Google Scholar 

  9. Theunissen TW, Powell BE, Wang H et al (2014) Systematic identification of culture conditions for induction and maintenance of naive human pluripotency. Cell Stem Cell 15:471–487

    Article  CAS  Google Scholar 

  10. Takashima Y, Guo G, Loos R et al (2014) Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell 158:1254–1269

    Article  CAS  Google Scholar 

  11. Guo G, von Meyenn F, Rostovskaya M et al (2017) Epigenetic resetting of human pluripotency. Development 144:2748–2763

    Article  CAS  Google Scholar 

  12. Nichols J, Silva J, Roode M et al (2009) Suppression of Erk signalling promotes ground state pluripotency in the mouse embryo. Development 136:3215–3222

    Article  CAS  Google Scholar 

  13. Roode M, Blair K, Snell P et al (2012) Human hypoblast formation is not dependent on FGF signalling. Dev Biol 361:358–363

    Article  CAS  Google Scholar 

  14. Kuijk EW, van Tol LT, Van de Velde H et al (2012) The roles of FGF and MAP kinase signaling in the segregation of the epiblast and hypoblast cell lineages in bovine and human embryos. Development 139:871–882

    Article  CAS  Google Scholar 

  15. Pickering SJ, Minger SL, Patel M et al (2005) Generation of a human embryonic stem cell line encoding the cystic fibrosis mutation deltaF508, using preimplantation genetic diagnosis. Reprod Biomed Online 10:390–397

    Article  Google Scholar 

  16. Solter D, Knowles B (1975) Immunosurgery of mouse blastocyst. Proc Natl Acad Sci U S A 72:5099–5102

    Article  CAS  Google Scholar 

  17. Guo G, von Meyenn F, Santos F et al (2016) Naive pluripotent stem cells derived directly from isolated cells of the human inner cell mass. Stem Cell Reports 6:437–446

    Article  CAS  Google Scholar 

  18. Popovic M, Dhaenens L, Boel A et al (2020) Chromosomal mosaicism in human blastocysts: the ultimate diagnostic dilemma. Hum Reprod Update 26:313–334

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by MRC project grant (RG85465) and core funding to the Wellcome Trust-MRC Cambridge Stem Cell Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer Nichols .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Strawbridge, S.E., Clarke, J., Guo, G., Nichols, J. (2022). Deriving Human Naïve Embryonic Stem Cell Lines from Donated Supernumerary Embryos Using Physical Distancing and Signal Inhibition. In: Rugg-Gunn, P. (eds) Human Naïve Pluripotent Stem Cells. Methods in Molecular Biology, vol 2416. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1908-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1908-7_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1907-0

  • Online ISBN: 978-1-0716-1908-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics